
APPENDIX B 
 

Analysis of the Asbestos PCMe,  

Dust Lead Loading and Dust Dioxin Loading Data 
 

Data analyzed in this report were extracted from the Residential database on September 10, 2003.  

A copy of the data set, with data necessary to protect the privacy of individual participants in the 

program redacted, is available from the EPA Region 2 Records Center.   

 

B.1 SUMMARY OF DATA COLLECTED 

B.1.1 Summary of TEM (PCMe) data  

 

Table 3-1 summarizes the sample results for asbestos.  The data described in this section and 

Section B.1.2 are results for asbestos phase contrast microscopy equivalent (PCMe) 

concentrations measured by transmission electron microscopy (TEM).  A total of 28,702 sample 

results were available for asbestos by PCMe; 22,497 from residential units, and 6,205 from 

common areas within residential buildings (e.g., hallways, laundry rooms).  Samples for PCMe 

analysis were collected from residential units that were tested only, as well as from residential 

units and common areas that were cleaned and tested.  Results by PCMe were compared to the 

health-based benchmark of 0.0009 f/cc (fibers/cubic centimeter) to determine the status (i.e., 

exceeds or does not exceed benchmark) of the residential units/common areas.  

 

The asbestos clearance criteria for the WTC Indoor Air Clean-up Program were based on long 

(i.e., ≥ 5 um) fiber counts.  The use of a minimum fiber length of 5 µm for carcinogenic activity 

represents current scientific consensus and reflects the criteria in the EPA Integrated Risk 

Information System (IRIS) for attributing carcinogenic potency. 

 

Phase Contrast Microscopy equivalence is a process to identify asbestos fibers by TEM analysis 

that would also be visible by PCM.  The optical resolution of the phase contrast microscope is 

approximately 5 microns in length and 0.25 microns in width for fiber analysis.  Historically, 



most of the occupational studies available (and reviewed in IRIS), from which estimates of cancer 

potency of asbestos are derived, employed PCM analysis.  Therefore, in cases where TEM is used 

for asbestos analysis, fiber counts need to be adjusted to estimate a PCMe.   

 

The asbestos counting rules employed for the WTC Indoor Clean-up Program were designed to 

record PCMe fibers.  Thus TEM analyses were performed, and fibers were then counted 

following AHERA (Asbestos Hazard Emergency Response Act) counting rules.  Fibers ≥5 µm 

(AHERA also stipulates a minimum 5:1 aspect ratio) were distinguished from total (i.e., > 0.5 

µm) fiber counts, although total fibers counts were also recorded.  To maximize analytical 

capacity for a large sampling event, no minimum width requirement was employed.  This may 

resulted in a modest over counting bias by not eliminating extremely thin fibers (i.e., <0.25 um) 

from the count.  However, the potential bias attributed to this counting procedure would be 

protective of human health.  Modification was made to AHERA (by obtaining larger samples 

volumes) in order to achieve the lower detection limits required by the use of a risk-based 

clearance criteria.    

 

B.1.2 Summary of TEM data. 

 

Table3-2 lists the types of asbestos that were detected by TEM in the airborne asbestos samples 

from residences and common areas.  Asbestos was detected in approximately 4% of the available 

TEM samples.  Chrysotile asbestos was the detected in approximately 92% of the samples 

included in this subset of the data; amosite was detected in approximately 3%.  Other forms of 

asbestos that were detected include actinolite, anthophyllite, tremolite, and crocidolite. 

 

B.1.3 Summary of Wipe data 

B.1.3.1 Lead and dioxin wipe data 

 

This section of the report describes lead and dioxin dust wipe data that were collected from 

263 residences that were located in 157 buildings.  Wipe data that were used to assess efficacy of 

the cleanup program are discussed in Section B.4 

 



B.1.3.1.1 Lead Wipe Data 

 

The database contained 1,540 wipe samples for dust lead loading that were collected from 263 

residences, located in 157 buildings.  Summary statistics for the data are provided in Table 3-3.  

Samples that were below the detection limit of 1.86 µg/ft2 were set equal to the detection limit.  

Review of existing environmental standards/regulations identified an applicable and relevant 

standard to set a health-based benchmark for lead in interior dust.  The Residential Lead-Based 

Paint Hazard Reduction Act (Title X) Final Rule (40 CFR, Part 745, 1/5/01) established uniform 

national standards for lead in interior dust.  Thus, both EPA and the United States Department of 

Housing and Urban Development (HUD) have set a dust standard for lead of 40 µg/ft2 for floors 

(including carpeted floors), and 250 µg/ft2 for interior window sills.  To support the development 

of a dust standard, EPA performed an analysis of the Rochester Lead-in-Dust Study (HUD, 

1995).  At 40 µg/ft2, a multimedia analysis shows a 5.3% probability that a child’s blood lead 

level would exceed 10 µg/dL.  Thus, this standard meets the criteria established by EPA (i.e., 

95% probability to be below 10 µg/dL) (EPA, 1994) for managing environmental lead hazards.  

However, an additional increment of protectiveness was added by setting the health-based 

benchmark for lead in settled dust at the more stringent HUD screening level of 25 µg/ft2.  

Approximately 9% of all lead wipe samples (i.e., test only and clean and test) were above the 

HUD screening level of 25 µg/ft2 (Table 3-3); approximately 14% of the pre-cleanup samples 

exceeded the HUD screening level , while approximately 3% of the post-cleanup samples 

exceeded the screening level (Tables 3-4 and 3-5).  Approximately 6% of the samples were above 

the HUD benchmark of 40 µg/ft2 (Table 3-3).    

 

B.1.3.1.2 Dioxin Wipe Data 

 

The database contained 1,535 wipe samples for dust dioxin loading that were collected from 

263 residences, located in 157 buildings.  Summary statistics for the data are provided in Table 3-

6.  The dioxin results were modified using a toxicity equivalency quotient (TEQ) that takes into 

account the toxicity differences between 17 congener groups.  The results are reported in 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) toxicity equivalents.  The TEQ values reported in Table 3-6 

represent the estimated maximum potential concentration (EMPC).  The TEQ EMPC value used 

data that indicated the presence of a congener above zero mg/m2 even if the sample did not meet 



all of the QA/QC reporting level criteria.  This value represents the highest potential 

concentration of dioxin that may be present.  At least one of the 17 congeners were detected in 

1,136 of the samples; the remaining 399 samples were reported as below the detection limit for 

each congener.  Only 8 of the 1,535 (approximately 0.5%) of the combined samples (i.e., test only 

and clean and test; Table 3-6) exceeded the health-based benchmark for residential dust dioxin 

loading of 2 ng/m2 (Table 3-6).  

 

B.1.3.2 Wipe Data for Other Metals 

 

Statistics for the 21 metals, and the reduction in the average dust loading rates for each, are 

provided in Table 3-7.  The data are grouped into three categories in Table 3-7: samples collected 

from residences and common areas that were cleaned and tested (clean and test samples), 

samples that were collected from residences that were tested only (test only samples), and the 

combination of these two categories (all samples).  

 

The database contained 1,517 results for mercury, and 1,544 results for all of the other metals.  

The rate of detection (based on all samples) varies widely from 0, for beryllium and thallium, to 

100%, for calcium, copper, iron, magnesium, potassium and zinc.  Eight of the 21 metals had 

detection rates of less than or equal to 5%; 4 had detection rates between 6 and 60%.  Results for 

each metal were compared against risk-based screening levels (Table 3-8).  Very few 

exceedances of the risk-based screening values were measured for any of the metals.  The 

screening value of 627 µg/m2, for antimony,  was exceeded in 2 pre-cleanup samples (0.1% of all 

samples); the maximum measured value was 1,180 µg/m2.  The screening value of 157 µg/m2 for 

mercury was exceeded in six samples (0.4% of all samples).  

 

B.2 EFFICACY OF THE DUST CLEANUP EFFORT 

B.2.1 Reductions in the Rate of Asbestos PCMe Exceedances 

 

The efficacy of the asbestos cleanup effort was assessed using PCMe exceedances for clean and 

test data.  One measure of effectiveness is the overall rate of exceedances, which equals the 

number of exceedances divided by the total number of samples that were collected (i.e., rate on a 



sample basis).  The overall exceedance rate on a sample-basis for the WTC cleanup program was 

approximately 0.00418, or 0.42%.   

 

An alternative measure of efficacy is the number of times a residence or a common area within a 

building (e.g., hallway, stairwell, laundry) had to be recleaned to achieve the clearance criteria of 

0.0009 f/cc.  The cleanup effort was effective in achieving the clearance criteria for PCMe 

approximately 99% of the time in residential units and common areas.  The PCMe clearance 

criterion was not achieved in 35 out of 3,387 (1.03%) residences, and in 11 out of 785 common 

areas (1.40%) after the first cleaning.  The probability of achieving the clearance on the second 

attempt in residential units that did not achieve clearance after the first cleaning approached 1 

(>0.999; 2 out of the 25 residences that were recleaned did not achieve clearance after the second 

cleaning - 10 residents elected not to have their residences recleaned, or were unresponsive).  The 

cleaning methods used were effective in reducing asbestos concentrations in residential air.  

 

A modified aggressive sampling procedure was used in most of the apartments (EPA, 2003a).  

The modified-aggressive sampling procedure was adapted from the aggressive sampling 

procedure described in AHERA.  The aggressive sampling procedure had a tendency to overload 

the sampling filter with dust, preventing the samples from being analyzed by the laboratory (EPA, 

2003a).  The modified aggressive sampling is thought to be more representative of typical 

household activity patterns (EPA, 2003a).  The rate of exceedance varied between the two 

sampling procedures.  On a sample basis, the exceedances rates in test only residences were 0.50 

and 0.49% for the aggressive and modified aggressive sampling procedures, respectively; the 

exceedances rates for the clean and test residences were 3.4 and 0.20% for the aggressive and 

modified aggressive sampling procedures, respectively.  The test only exceedances rates were not 

significantly different by Fisher’s exact test (p>0.99); the clean and test exceedances rates were 

statistically significant by Fisher’s exact test (p<0.01).  On a residence-basis (i.e., one or more 

sample result from the residence equal or exceeded the benchmark for asbestos), the exceedances 

rates in test only residences were 3.0 and 1.1% for the aggressive and modified aggressive 

sampling procedures, respectively; the exceedances rates for the clean and test residences were 

6.4 and 0.64% for the aggressive and modified aggressive sampling procedures, respectively.  

The test only exceedances rates were not significantly different by Fisher’s exact test (p>0.34); 

the clean and test exceedances rates were statistically significant by Fisher’s exact test (p<0.01). 



 



B.2.2 Reductions in dust lead loadings   

 

The indoor environment is considered to be a complex and dynamic system that is influenced by 

many interacting factors (physical, chemical, thermodynamic conditions, human activity, building 

design, building materials, HVAC system, etc.)   Therefore, it is not uncommon to find variability 

in the amount of contaminants in settled dust within a building, and certainly from one building to 

the next.  In addition to WTC proximity, the large CV is also likely due to the wide range of 

diversity in the housing stock, contents of the residences and common areas, and preexisting 

conditions, or previous activity, at these sites. 

 

To assess the effectiveness of the cleanup program, the wipe data were divided into two groups: 

samples that were collected before the apartments were cleaned (pre-cleanup), and samples that 

were collected after the apartments were cleaned (post-cleanup).  Pre-cleanup lead wipe samples 

and post-cleanup samples were collected from 214 apartments, located in 145 buildings.  Samples 

that were below the detection limit of 1.86 µg/ft2 were set equal to the detection limit.  Table 3-4 

provides statistics for the pre-cleanup and post-cleanup lead wipe data; a more complete set of 

statistics is provided in Appendix A, Table A-1.  On average, three pre-cleanup and three post-

cleanup wipe samples were collected from each apartment (see Section 2.2 for an overview of the 

cleanup program).   

 

The data are highly positively skewed with a very large coefficient of variation (CV).  The high 

positive skewness indicates that a few lead wipe samples contained much higher levels of lead 

than the majority of the samples (Figure B-1).  The large CV indicates the data are highly 

variable; i.e., the lead wipe samples indicate the dust lead loadings vary over a wide range of 

values.  One factor that is a likely contributor to variability in lead wipe sampling results is the 

presence of lead-based paint in older (i.e., pre 1950) housing.  This factor is exemplified in the 

case of the two highest recorded lead wipe samples in the data set.  These two samples were pre- 

(6,790 µg/ft2) and post-cleaning (7,250 µg/ft2) wipes obtained from the top of a storage chest.  

The lead loading measured in the two other pre-cleanup lead wipe samples collected from this 

residence was 3.57 and 91.8 µg/ft2, and the lead loading in the two other post-cleanup samples 

was 7.41 and 7.56 µg/ft2.  The extremely high lead loads in these two matched samples prompted 

additional investigation which determined that the chest surface was remarkable for flaking paint.  

A paint chip sample was analyzed and contained 14% (140,000 µg/kg) lead, thus, providing a 



plausible explanation for the aforementioned sampling results.  Table 3-5 provides statistics for 

the pre-cleanup and post-cleanup lead wipe data with the above two values removed, as  
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outliers; a more complete set of statistics is provided in Appendix A, Table A-1a.  Although the 

above two outliers were excluded from the remainder of the analyses of the lead wipe data, their 

inclusion would not have changed the results of the statistical tests that are described later in this 

section. 

 

The high CV and skewness often mask differences between subsets of the data; e.g., between pre-

cleanup and post-cleanup dust lead levels.  The issue of high CV and skewness are closely related 

to the issue of normality.  Many statistical methods for comparing two or more sets or subsets of 

data are based on an assumption that the data are derived from a normal distribution.  As shown 

in Figures B-2 and B-3, a normal distribution is a bell-shaped curve that is symmetric about the 

mean (i.e., skewness=0).  One method of reducing the skewness and CV, thereby improving the 

fit of a normal distribution to the data, is to take the logarithms of the data.  Log-transformation of 

the data reduced the skewness to 1.17 and 0.71 for the pre-cleanup and post-cleanup data, 

respectively, and the CV to 0.57 and 0.48, respectively.  Likewise, tests for normality1 indicate 

the log-transformation improved the fit of a normal distribution to the pre-cleanup and post-

cleanup data (S-W statistic increased to 0.90 and 0.89, respectively) however, the log-transformed 

data continue to display substantial departures from normality (p<0.0001 for both subsets). 

 

The cleanup program reduced the overall number of exceedances from 92 (13.5 % of samples) to 

20 (3.0% of samples).  The mean and median of the combined post-cleanup data are less than the 

pre-cleanup data (Table 3-5).   

 

One approach to assessing the effectiveness of the cleanup program would be to compare the 

distribution of the 680 pre-cleanup samples to the 673 post-cleanup samples, taking into account 

various factors that effect lead loading in residential areas (e.g., the amount and condition of lead-

based paint, the amount of carpeted floors, the amount of upholstered furniture).  This approach 

would provide the ability to estimate the effects of these various factors on the effectiveness of 

the cleanup program; however, data for these various factors are not readily available for the 

cleanup program.     

 

                                                      
1 The following tests for normality were performed in each case: Anderson Darling, Cramer-von 

Mises, Kolmogorov-Smirnoff, and Shapiro-Wilk. 



An alternative to the above approach would be to calculate the difference between the mean pre-

cleanup and mean post-cleanup lead wipe loadings for each of the 214 residences, and comparing 

the 214 differences.  The advantage of analyzing the differences between pre-cleanup and post-

cleanup loadings  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B-2.  Histogram for 10,000 randomly generated samples from a standard 
normal distribution.  The value of the sample is shown on the x-axis, the y-axis 
shows the percent of the 10,000 samples that have the value indicated on the x-
axis.  For example, approximately 10% of the 10,000 samples have a value of 
approximately 0.  The normal distribution is a bell-shaped curve that is 
symmetric about the mean, which equals 0 for the standard normal distribution.  
For any normal distribution, approximately 66% of the observations occur within 
a distance of 1 standard deviation of the mean; approximately 95% occur within a 
distance of 2 standard deviations of the mean.  For example, approximately 66% 
of the 10,000 simulated values fall within the interval bounded by -1 and +1 and, 
approximately 95% of the values fall within the interval bounded by -2 and +2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B-3.  Boxplot for 10,000 randomly generated samples from a standard 
normal distribution.  The values of the samples (i.e., z-values or standard normal 
deviates) are shown on the y-axis.  The boxplot is another method of illustrating 
the distribution of a sample.  As shown above, the boxplot for a normal 
distribution is symmetric about the mean/median.  The median (indicated by 
horizontal line that is located within the box) and mean (indicated by black ‘+’) 
of a normal distribution are equal, and located at the center of the box.  The 25th 
percentile of the distribution (indicated by the bottom of the box) and the 75th 
percentile (indicated by the top of the box) are equidistant from the 
median/mean; the extreme values (indicated by the short horizontal lines at the 
end of the vertical lines that emanate from the box) as are also approximately 
equidistant from the median/mean.  The skewness of a normal distribution equals 
zero; a positively skewed population is characterized by a few observations that 
are much larger than the rest of the observation; see Figure 3-1 for an example of 
extreme positive skewness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



on a residence-by-residence basis is that it takes into consideration the multiple factors (e.g., age 

of buildings) that effect the dust lead loadings in an apartment, without the need to explicitly 

incorporate these factors in the analyses.  Statistical comparisons between the pre-cleanup and 

post-cleanup dust lead loadings using the second approach will tend to be more powerful than 

those made using the first approach when multiple factors affect the dust lead loading2.  

Therefore, the second approach was adopted for this analysis.   

 

Table B-1 presents statistics on the average pre-cleanup and post-cleanup dust lead loadings, on a 

residence-by-residence basis, and the reduction in the average dust lead loading for the 214 

cleaned residences.  A more complete set of statistics for lead wipe reductions is provided in 

Appendix A, Table A-2.  The dust lead loadings shown in Table B-1 are average loadings for 

each residence that were estimated with approximately three pre- and three post-cleanup samples 

collected from each residence.  The distribution of the reductions is positively skewed with high 

variance (Figure B-4).  Tests for normality indicate the normal distribution provides a poor fit to 

the data.  A log-normal transformation of the data fails to substantially improve normality (S-

W=0.37, p<0.0001).  The evaluation to determine the efficacy of the cleanup program, presented 

below, considers the high variance, skewness and deviation from normality exhibited by the data. 

 

On average, the cleanup program reduced the average dust lead loading in each residence by 

approximately 16 µg/ft2 (95% confidence interval [CI]3, 10.0, 29.4%).  The reduction in the mean 

dust lead loading was found to be statistically significant by the t-test (t=3.64, p=0.0003).  The t-

test assumes the differences are normally distributed, which is a questionable assumption for this 

data (Table B-1).  As a check on the apparent violation of the normality assumption, the 

significance of the reduction in dust lead loadings was also tested using the nonparametric sign 

test.  The sign test assumes only that  

                                                      
2 The addition of factors in the analyses decreases the degrees of freedom that are available to 

compare the pre-cleanup dust lead loadings with the post-cleanup loadings.   
3 Confidence interval was determined by bootstrapping, using the bias-corrected accelerated 

(BCa) method (Efron and Tibshirani, 1993).  The BC bootstrap method does not rely on an 

assumption of normality for the distribution of the mean of the reduction in dust lead loadings, 

and is therefore preferred over the typical method (i.e., using the t-distribution) for this data. 



 
 
 

Table B-1.  Reduction in Average Lead Wipe Loadings  
(Pre- and Post-cleanup) (µg/ft2). 

 
Statistics for average pre-cleanup and post-cleanup residential dust lead loading 
measured by wipe samples are shown, and statistics for the reduction in the 
average dust lead loading.  The average dust lead loadings and the reduction in the 
averages, continue to display substantial departures from normality; a log-
transformation of the data fails to improve the fit of a normal distribution to the 
data (S-W statistic for reductions=0.37 , p<0.0001; pre-cleanup averages: S-W 
statistic=0.95, p<0.0001; post-cleanup averages: S-W statistic=0.92).  Outliers 
were removed from the dataset (see Section 3.4.1 for details). 
 

Statistic 

Reduction in 
Average Lead 
Wipe Loading 

Average 
Pre-cleanup Lead 

Wipe Loading 

Average 
Post-cleanup Lead 

Wipe Loading 
n 214 214 214 
Mean 16.21 24.40 8.19 
Standard deviation 65.16 66.34 17.10 
Skewness 7.23 7.73 12.17 
CVa 4.02 2.727 2.096 
Var 4245.98 4401.40 292.29 
Maximum 708.21 748.95 241.67 
Median 1.77 8.66 6.79 
Minimum -163.27 1.86 1.86 
S-W Statisticb 0.33 0.15 0.22 
Prob Normalc <0.0001 <0.0001 <0.0001 
 

aCV=coefficient of variation=standard deviation/mean 
bS-W Statistic: Shapiro-Wilk statistic 
cProb Normal: probability the data are from a normal distribution by Shapiro-Wilk test. 

 
 
 
 
 
 
 
 



 
 
 
 

Figure B-4. Boxplot for the reduction in residential average dust lead loading 
(µg/ft2).  The short ‘box’ indicates the majority of the reductions occur within a 
very short range of values; 50% of the reductions are between 0 and 9.50 µg/ft2.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



the differences between the pre-cleanup and post-cleanup means are independent random 

variables4.  The sign test considers only the direction of the difference (i.e., positive or negative), 

not the magnitude of the differences, which removes the effects of the extreme measurements 

(which produce the positive skewness) on the test results.  The sign test also indicated the 

reduction in the dust lead loadings were significant (M=53.5, p<0.0001).   

 

The effect of cleaning can also be expressed as a percent decrease in the dust lead loading 

(Equation B-13).  The mean percent reduction in dust lead loading was 20.4% (95% CI3, 8.8, 

27.9%).  The data set included two extreme negative percent decreases; an increase in mean dust 

lead loading of 485% that corresponded to an increase from a pre-cleanup mean loading of 4.9 

µg/ft2 to a post-cleanup loading of 27.1 for a 22nd floor residence, and an increase from 4.4 to 25.9 

µg/ft2 for a 5th floor residence.  After these observations were removed from the data, the mean 

percent reduction in dust lead loading was 25.0% (95% CI, 17.7, 31.3%). 

 

   Percent decrease 
( )

pre

postpre

x
xx −

⋅=100    Equation B-13 

 

Where, 

  =prex  average pre-cleanup dust lead loading 

  =prex  average post-cleanup dust lead loading 

 

Another method for analyzing the effectiveness of the cleanup program in reducing dust lead 

loadings is to determine the rate (i.e., proportion of residences) at which the average dust lead 

loadings were reduced by the cleanup.  In 9 of the residences, all of the average pre- and post-

cleanup dust lead loading measurements were less than the detection limit.  Of the remaining 205 

residences, the post-cleanup average dust lead loading was greater than the pre-cleanup average 

in 49 residences, and lower in the other 156 residences, yielding a rate of reduction of 

approximately 76%.  The sign test discussed in the previous paragraph is based on the number of 

                                                      
4 This assumption is also not strictly valid because random sampling methods were not used to 

select which residences were cleaned (it was a voluntary program) and random sampling methods 

were not used to select the subset of the cleaned residences where dust wipe samples were 

collected.   



reductions (i.e., not the magnitude of the reductions) and, therefore, provides a test for the 

statistical significance for the rate of reduction (i.e., the number of reductions / the number of 

cleaned and tested residences).  Therefore, the sign test indicates that the rate at which the 

cleanup program lowered the average residential dust lead loading is statistically significant 

(M=53.5, p<0.0001).  

 

B.2.2.1 Reductions in dust lead loadings in residences with pre-cleanup levels 

greater than the health-based benchmarks for lead loading 

 

The effectiveness of the cleanup program at reducing dust lead loading in the 36 residences that 

had pre-cleanup dust lead loadings greater than the HUD screening level of 25 µg/ft2 was 

assessed.  Table B-2 provides statistics for dust lead loading for these residences; a more 

complete set of statistics is provided in Appendix A, Table A-3.  The dust lead loadings shown in 

Table B-2 are average loadings for each residence that were estimated with approximately three 

pre- and three post-cleanup samples collected from each residence.  As expected, the distributions 

of the average pre-cleanup, post-cleanup and dust lead loading reductions for this subset of the 

data are less skewed and have lower CVs than the distribution of the lead loadings for all 214 

sampled apartments.  The log-transformation of the reductions in the average loading does not 

substantially improve normality (S-W statistic=0.71, p<0.0001).   

  

Thirty-six residences had pre-cleanup average dust lead loadings greater than the HUD screening 

of 25 µg/ft2.  The cleanup program reduced the average dust lead loading in the residences with 

average pre-cleanup loadings above the HUD screening level by approximately 85 µg/ft2 (95% 

CI,3 71.2, 173.6%).  The reduction in the average dust lead loading was found to be statistically 

significant (t-test, t=3.61, p=0.0009; sign test, M=17, p<0.0001).   

 

The cleanup program was successful in reducing average dust lead loading in 31 of the 36 

residences to below the 25 µg/ft2 HUD screening level, a success rate of approximately 86%.  In 

four other residences, the average post-cleanup dust lead loading was substantially reduced, but 

remained above 25 µg/ft2; from 749.0 to 40.7, 149.3 to 28.8; 120.9 to 39.2; 83.2 to 40.7; and 61.6 

to 31.7 µg/ft2.  The post-cleanup average increased from 78 to 242 µg/ft2 in one residence.  In 

three cases, a residence with a pre-cleanup average dust lead loading less than the screening level 

had a post-cleanup average that exceeded the screening level.  The increases in post-cleanup 



average dust lead loadings could reflect sampling variability or site-specific factors that can not 

be assessed with data that are currently available.   

 



 

Table B-2.  Statistics on Reduction in Average Lead Wipe Loadings (Pre- and Post-cleanup) 
(µg/ft2) in Residences with Pre-cleanup Greater Than  

the Health-based Benchmark of 25 ug/ft2. 
 

The average dust lead loadings and the reduction in the averages show less variation and are less 
skewed than the complete distribution of average residential dust lead loadings.  A log-
transformation of the averages slightly improves the fit of a normal distribution to the data (S-W 
statistic for reductions=0.71, p<0.0001; pre-cleanup averages: S-W statistic=0.89, p<0.0001; post-
cleanup averages: S-W statistic=0.88, p<0.0001); however, significant departures from the normal 
distribution model remain.  Outliers were removed from the dataset (see Section 3.4.1 for details). 
 

Statistic 
Reduction in Average 
Lead Wipe Loading 

Average Pre-cleanup 
Lead Wipe Loading 

Average Post-cleanup Lead 
Wipe Loading 

n 36 36 36
Mean 84.84 102.12 17.28
Standard deviation 140.85 138.37 39.62
Skewness 2.90 3.47 5.49
CVa 166.01 135.50 229.28
Var 19838.34 19147.47 1569.75
Maximum 708.21 748.95 241.67
Median 38.82 48.52 8.08
Minimum -163.27 25.86 1.86
S-W Statisticb 0.64 0.56 0.32
Prob Normalc <0.0001 <0.0001 <0.0001
 

aCV=coefficient of variation=standard deviation/mean 
bS-W Statistic: Shapiro-Wilk statistic  
cProb Normal: probability the data are from a normal distribution by Shapiro-Wilk test 



Twenty-three residences had pre-cleanup average dust lead loadings greater than the HUD 

benchmark of 40 µg/ft2.  Average post-cleanup dust lead loading in residences with average pre-

cleanup loadings above the HUD benchmark of 40 µg/ft2 were approximately 120 µg/ft2 lower 

than average pre-cleanup loadings.  The cleanup program reduced the average dust lead leading 

in 21 out of the 23 residences, a success rate of approximately 91%. 

 

B.2.2.2 Effect of floor level / pre-cleanup average dust lead loading on the 

reduction in dust lead levels 

 

The reduction in lead loadings (on a percent change basis) was related to building floor number, 

through an effect of floor number on pre-cleanup mean dust lead loadings.  Lower floors tended 

to have higher pre-cleanup lead loadings5 and, therefore, showed greater reduction in loading 

(discussed further in Section B.4.3).  Of the 36 residences with pre-cleanup means greater than 

the HUD screening level of 25 µg/ft2, 17 of them were located on lower floors (i.e., ≤ 3rd floor), 

14 on floors between the 4th  and 10th floors, and 5 at floors greater than the 10th  (two at 11 and 

one at 12).  Figure B-5 shows a plot of the log-transformed pre-cleanup means vs. floor number; 

higher average pre-cleanup loadings tended to occur in residences that are located on floors 10 

and lower.   

 

In the following analysis, floor numbers are used as a surrogate for pre-cleanup average 

concentration.  Typically, 30 observations or more are desired for making statistical comparisons 

between two or more groups of data.  None of the floor levels had 30 observations and just six 

floor levels had 10 or more observations (i.e., differences between pre- and post-cleanup dust lead 

loadings).  Therefore, floor levels were combined into three groups: the first group (lower) 

consisting of basement through 3rd floor residences, second group (middle) consisting of floors 4 

through 10, and the third group consisting of all residences in floors 11 and up (upper).  Statistics 

for the pre-cleanup average dust lead loadings for each floor group are shown in Table B-5; Table 

A-4 provides additional statistics for this data.  The data show moderate to high variability, and 

large positive skewness; log-transformation substantially improved normality for all three floor 

                                                      
5 Older buildings in lower Manhattan tend to have fewer floors than newer buildings.  The 

tendency for lower floors to contain higher pre-cleanup lead loadings may be attributable, at least 

in part, to the age of the building. 



groups.  The differences between the means of the pre-cleanup average dust lead loading between 

the lower and upper floor groups (25.3 µg/ft2) is statistically significant  



 

Table B-3.  Statistics for Average Pre-cleanup Residential Dust Lead 
Loading by Floor Group (µg/ft2). 

 
The tendency for average dust lead loadings to decrease with increasing floor 
level is indicated by the statistics shown in the table.  Also shown is a 
tendency for the variance to increase with increasing average dust lead 
loading.  When grouped by floor level, the average pre-cleanup dust lead 
loadings show less variation and are less skewed than the complete 
distribution of average residential dust lead loadings.  A log-transformation 
of the averages substantially improves the fit of a normal distribution to the 
data (S-W statistic for lower floor group=0.95, p=0.0149; middle: S-W 
statistic=0.96, p=0.0127; upper: S-W statistic=0.90 , p<0.0002).  Outliers 
were removed from the dataset (see Section 3.4.1 for details). 
 

Floor Groupa 

Statistic Lower Middle Upper 
n 61 93 60 
Minimum 1.86 1.86 1.86 
Maximum 748.95 413.87 294.33 
Median 9.20 10.03 7.25 
Mean 39.52 21.08 14.18 
Standard deviation 102.71 46.41 37.98 
Skewness 5.84 6.97 7.06 
CVb 2.60 2.20 2.68 
S-W Statisticc 0.36 0.34 0.25 
Prob Normald <0.0001 <0.0001 <0.0001 
 

aFloor Group: Lower=floors ≤3; Middle=3 < floors ≤10; upper=floors >10 
bCV=coefficient of variation=standard deviation/mean 
cS-W Statistic: Shapiro-Wilk statistic  
dProb Normal: probability the data are from a normal distribution by Shapiro-Wilk test 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

Figure B-5. Scatter plot of log-transformed pre-cleanup residential average dust lead 
loadings (vertical axis), by floor.  The plot indicates that the pre-cleanup average 
residential dust lead loading decreases with increasing floor levels up to 
approximately floor level of 15.  The mean and variability in pre-cleanup average dust
lead loading is fairly constant at floors higher than 15. 

 



 
 
 
 
 
 



(t-test with log-transformed data = 2.60, p=0.0104); the difference between the medians of the 

lower and upper floor groups is statistically significant by the Mann-Whitney test (W=1,375, 

p=0.0185).  The difference between the means of the middle and upper floor groups (6.9 µg/ft2) is 

statistically significant (t-test with log-transformed data = 2.22, p=0.0281); the difference 

between the medians of the middle and upper floor groups is statistically significant by the Mann-

Whitney test (W=2,067, p=0.0069).   

 

As expected, the reduction in dust lead loading in µg/ft2, and on a percent decrease basis, varied 

by floor level (i.e., pre-cleanup average loading) (Tables B-4 and B-5).  The differences in the 

reductions in dust lead loading between the lower and upper floor groups, and the middle and 

upper floor groups were found to be significant by the nonparametric Mann-Whitney test 

(W=986.0, p=<0.0001; W=2034.5, p=<0.0048, respectively).  Prior to estimating the difference 

in the percent reduction in dust lead loadings between the different floor groups, two observations 

with extreme negative percent reductions were removed from the data set (see Section B.4.1 for 

details).  The differences in the percent reductions in dust lead loading between the lower and 

upper floor groups, and the middle and upper floor groups of were found to be significant by the 

Mann-Whitney test (W=934.5, p=<0.0001; W=1978.5, p=<0.0051, respectively).  The cleanup 

program was successful in reducing the dust lead loading in residences with the highest pre-

cleanup average loadings (i.e., located on floor numbers 3 and lower) by approximately 33.1 

µg/ft2, or 43.5 % (95% CI,3 17.8, 78.9 µg/ft2; 29.71, 53.39%).  Average residential dust lead 

loadings in the middle floors were reduced on average by 11.1 µg/ft2, or 23.1 % (95% CI,3 4.40, 

27.14 µg/ft2, 17.42, 39.55 %, respectively).  The dust lead loading in floors higher than 10 were 

reduced on average by 6.9 µg/ft2, or 8.6% (95% CI,3 1.44, 28.54 µg/ft2, -2.70, 18.35 %, 

respectively).   

 

B.2.3 Reductions in dust dioxin loadings 

 

The measurable effect of the cleanup program on dust dioxin loadings was less than it was for 

lead due primarily to low pre-cleanup dust dioxin loadings, which limits the usefulness of the 

dioxin data to assess the efficacy of the dust cleanup program  For this reason, the analysis of the 

dioxin results is less extensive than the analysis of the lead results. 

 



Pre-cleanup and post-cleanup dust wipe samples for dioxin were collected from 212 apartments, 

located in 145 buildings.  Table B-6 provides statistics for the pre-cleanup and post-cleanup 

dioxin wipe data; a more complete set of statistics is provided in Appendix A, Table A-5 and A-

5a.  On average, three pre-cleanup and three post-cleanup wipe samples were collected from each 

apartment (see Section 2.2 for  



 
 
 
 
 Table B-4.  Reduction in Dust Lead Loading by Floor Group (µg/ft2). 

 
The mean reduction in average residential dust lead loading varies by floor 
level, as expected given the large variation in average pre-cleanup dust lead 
loadings between the floor groups.  The difference in the reduction between 
the lower and upper floor groups, and between the middle and upper floor 
groups, are statistically significant (see Section 3.3.2.3 for details).  A log-
transformation of the averages fails to improve the fit of a normal 
distribution to the data (S-W statistic for lower floor group=0.41, p<0.0001; 
middle: S-W statistic=0.41 , p<0.0001; upper: S-W statistic= 0.27 , 
p<0.0001).  Outliers were removed from the dataset (see Section 3.4.1 for 
details). 
 

Floor Groupa 

Statistic Lower Middle Upper 
N 61 93 60 
Minimum  -6.18 -163.27 -22.18 
Maximum 708.21 408.96 289.03 
Median 3.94 2.37 0.51 
Mean 33.11 11.10 6.94 
Standard deviation 97.77 48.91 38.14 
Skewness 5.85 5.61 7.10 
CV 2.95 4.40 5.50 
S-W Statistic 0.35 0.37 0.25 
Prob Normal <0.0001 <0.0001 <0.0001 
 

aFloor Group: Lower=floors ≤3; Middle=3 <floors ≤10; upper=floors >10 
bCV=coefficient of variation=standard deviation/mean 
cS-W Statistic: Shapiro-Wilk statistic  
dProb Normal: probability the data are from a normal distribution by Shapiro-Wilk test 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Table B-5.  Percent Reduction in Average Residential Dust Lead Loading by 
Floor Group (µg/ft2). 

 
The percent reduction in average residential dust lead loading varies by floor 
level.  The difference in the reduction between the lower and upper floor groups, 
and between the middle and upper floor groups, are statistically significant (see 
Section 3.3.2.3 for details).  The negative skewness for each floor level is due to 
a few increases in average dust lead loading after cleanup.  In addition to the two 
observations that were removed as outliers (see Section 3.4.1), two residences 
were removed from the this analysis as outliers; the average post-cleanup dust 
lead loading in these residences were 484% and 448% higher than the pre-
cleanup average (i.e., increased from 4.4 to 25.9, and 4.9 to 27.1 µg/ft2, 
respectively). 
 

Floor Groupa Statistic 
Lower Middle Upper 

N 61 92 59 
Minimum -180.10 -208.25 -149.79 
Maximum 95.41 98.82 98.20 
Median 57.39 29.24 6.94 
Mean 43.48 23.13 8.64 
Standard deviation 47.02 54.51 41.71 
Skewness -1.84 -1.69 -0.70 
CV 1.08 2.36 4.83 
S-W Statistic 0.83 0.87 0.95 
Prob Normal <0.0001 <0.0001 <0.0085 
 

aFloor Group: Lower=floors ≤3; Middle=3 < floors ≤10; upper=floors >10 
bCV=coefficient of variation=standard deviation/mean 
cS-W Statistic: Shapiro-Wilk statistic  
dProb Normal: probability the data are from a normal distribution by Shapiro-Wilk test 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table B-6.  Statistics for Dioxin Wipe Clean and Test Data (ng/m2). 
 

The data summarized in the above table are dioxin toxicity equivalents (TEQs), 
which are the sum of 17 different chemical forms (congeners) of dioxin.  The 
clean and test subset of the data exhibit high positive skewness but low 
variance.  Few exceedances were observed for dioxin.  The raw data and log-
transformed pre- and post-cleanup data fail the S-W test for normality (log-
transformed data [pre-/post-]: S-W statistic=0.71/0.89, p<0.0001/p<0.0001). 
 

Statistic Pre-cleanup Pre-cleanupa Post-cleanup 
Apartments sampled 213 213 213 
Buildings sampled 145 145 145 
Number of samples 674 673 668 
Nondetects 162 (24.0%) 162 (24.1%) 228 (34.1%) 
Exceedancesb 3 (0.4%) 2 (0.3%) 4 (0.6%) 
Minimum 0.27 0.27 0.27 
Median 0.60 0.60 0.59 
Mean 0.81 0.66 0.65 
Maximum 103 5.14 4.34 
Standard deviation 3.95 0.29 0.28 
Skewness 25.75 6.79 5.27 
CVc 0.49 0.44 0.42 
S-W Statisticd 0.03 0.57 0.62 
Prob Normale <0.0001 <0.0001 <0.0001 
 

aStatistics for pre-cleanup data with one outlier removed (see Section B.2.3 for details). 
aExceedance: dioxin wipe samples that exceeded the health-based benchmark of 2 ng/m2 TEQ 
EMPC (ND=1/2). 
bCV=coefficient of variation=standard deviation/mean 
cSW-Statistic: Shapiro-Wilk statistic 
dProb Normal: probability the data are from a normal distribution deviation/mean 



a description of the cleanup program).  The dioxin loading measured in one sample collected 

from a fireplace mantle had a value of 75.3 ng/m2, approximately 20 times higher than the next 

highest value (5.14 ng/m2).  This sample was removed from the data set as an outlier.  The pre- 

and post-cleanup data exhibit moderate variance and positive skewness, and the normal 

distribution is found to be a poor fit to the data (Figure B-6).  A log-normal transformation of the 

data fails to substantially improve normality.  Given the low levels of dioxin that were found 

prior to cleanup, the mean and median of the post-cleanup data are very similar to the mean and 

median of the pre-cleanup data.   

 

Table B-7 presents statistics on the average pre-cleanup, average post-cleanup and average 

reduction in dust dioxin loadings, on a residence-by-residence basis.  The distribution of the 

reductions is moderately negatively skewed with high variance (Figure B-7).  Tests for normality 

indicate the normal distribution provides a poor fit to the data.  A log-normal transformation of 

the data fails to improve normality (S-W=0.85, p<0.0001).     

 

On average, the cleanup program reduced the average dioxin loading by approximately 0.01 

ng/m2 (95% CI,3 –0.0161, 0.0327%).  The inclusion of zero within the CI indicates that the 

reduction in dust dioxin loading is not significant.  However, the sign test (M=14, p=0.06) and, 

particularly, the Wilcoxon signed rank test (S=1,790, p=0.05), indicate that the reduction in dust 

dioxin loadings was significant.  The Wilcoxon signed rank test will tend to be more powerful at 

detecting differences between the pre-cleanup and post-cleanup average dust dioxin loadings than 

the sign test provided that the distribution of the differences in dust dioxin loading is symmetric 

(but not necessarily conforming to a normal distribution) (Conover, 1999).  Based on Figure B-7, 

the assumption of symmetry appears to be reasonable.   

 

The post-cleanup average dioxin loading was greater than the pre-cleanup average in 92 

residences, and lower in the other 120 residences, yielding a rate of reduction of approximately 

57 %.  The sign test (see preceding paragraph) indicates that the rate at which the cleanup 

program lowered the average residential dust dioxin loading is statistically significant. 

 

To assess the effectiveness of the dust cleanup program for residences that had measurable pre-

cleanup dust dioxin loading, the comparison between residential average pre-cleanup dust dioxin 

loadings and residential average post-cleanup dust dioxin loadings was limited to residences 

where all the pre-cleanup measurements for dioxin were above the detection limit.  There were 



124 residences In 93 buildings that met this criterion.  The pre-cleanup measurement of 75.3 

ng/m2 was not included in this data set (see preceding section).  The cleanup program reduced the 

residential average dust dioxin loading in these  



 
 
 

Table B-7.  Reduction in Average Dioxin Wipe Loadings (TEQ)a  
(Pre- and Post-cleanup) (ng/m2). 

 
The reductions in average residential dust dioxin loadings are more modest than the 
reductions achieved for average dust lead loading, primarily due to the low average pre-
cleanup dust dioxin loadings.  Analysis of the reduction in the residential average dust 
dioxin loading in a subset of the 212 residences, where all pre-cleanup sample 
measurements results were greater than the detection limit, also indicated an average 
reduction of 0.01 ng/m2. 
 

Statistic 
Reduction in Average 
Dioxin Wipe Loading 

Average Pre-cleanup 
Dioxin Wipe Loading 

Average Post-cleanup 
Dioxin Wipe Loading 

n 212 212 212
Mean 0.01 0.65 0.64
Standard deviation 0.18 0.18 0.19
Skewness -0.97 1.88 2.06
CVb 19.02 0.28 0.30
Var 0.03 0.03 0.04
Maximum 0.63 1.61 1.36
Median  0.01 0.60 0.60 
Minimum -0.81 0.33 0.32
S-W Statisticc 0.85 0.83 0.78 
Prob Normald <0.0001 <0.0001 <0.0001 
 

aTEQ: toxicity equivalent quotient. 
bCV=coefficient of variation=standard deviation/mean 
cS-W Statistic: Shapiro-Wilk statistic  
dProb Normal: probability the data are from a normal distribution by Shapiro-Wilk test 

 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure B-6. Boxplots for residential dust dioxin loading (µg/ft2), by sample 

type.  The distributions of the pre- and post-cleanup average dust dioxin 
loadings also exhibit extreme positive skewness.  No pre- or post-cleanup 
average dust dioxin loadings exceeded the health-based benchmark of 2 
ng/m2.  One observation, with a value of 103 ng/mr, was removed from the 
data as an outlier.   This observation was collected from the mantle of a 
fireplace. 

 
 
 
 
 



 
 
 
 
 
 



 
 
 

 

Figure B-7. Boxplot for the reduction in residential average dioxin 
wipe reductions.  The short length of the ‘box’ indicates the most of 
the reductions are close to zero.  The small reductions are due to the 
low pre-cleanup average dust dioxin loadings in all but one of the 
residences (the residence with the one high pre-cleanup dioxin dust 
loading of 103 ng/m2).  One observation, with a value of 103 ng/mr, 
was removed from the data as an outlier.   This observation was 
collected from the mantle of a fireplace. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



124 residences by approximately 0.01 ng/m2, the same average reduction that was observed in the 

212 residences.    

 

B.3 SPATIAL PATTERN OF PCME EXCEEDANCES 

B.3.1 Analytical approach 

B.3.1.1 Purpose 

 

Data were analyzed to detect the possible presence of spatial, or geographic patterns in the 

occurrence of PCMe exceedances.  In this report, a PCMe exceedance is defined as a sample 

result that exceeded the heath-based benchmark of 0.0009 fibers/cc.  Detection of spatial patterns 

in the exceedances could be used to identify possible sources of the exceedances, or lead to 

explanations for the exceedances.  The latter could be used to improve future cleanup and/or 

monitoring efforts.  The data were divided into two groups: data from residences and building 

common areas that were cleaned and tested (clean and test data), and data from residences that 

were tested only (test only data).  All common areas (e.g., lobbies, laundry rooms, hallways, 

stairwells) were cleaned and tested. 

 

B.3.1.2 Analytical Methods and Spatial Resolution 

 

The methods that are used to detect and measure spatial patterns depend upon the spatial scale 

and resolution at which the spatial patterns are analyzed.  The spatial scale refers to the 

geographic extent over which the analysis is performed.  In this report, the geographic scale is 

lower Manhattan, south of Canal Street (Figure 1-1).  Regarding geographical scale, the pattern of 

PCMe exceedance could be analyzed by examining the buildings where the health-based 

benchmark was exceeded, or by examining the number, or rate of exceedances over larger 

geographic areas.  As resolution decreases, the data must be aggregated (e.g., summed, averaged) 

over the chosen geographic units (e.g., zip codes), which results in some loss of geographic 

information (i.e., the exact location where the individual exceedances occurred).  However, 

aggregating the data tends to reduce variability, which may then reveal spatial patterns that had 

been obscured by small-scale variability in the data (i.e., fluctuations in the data over short 

distances).   



 

The appropriate spatial scale and resolution depends upon the objectives of the analysis.  For 

example, one of the objectives of this analysis was to determine if the geographic location of 

PCMe exceedances were clustered geographically.  For this objective, the PCMe data were 

analyzed at the site level and the building level (the latter being the smallest geographic unit 

reported).  The second objective was to determine if the rate of PCMe exceedance (i.e., number of 

exceedances/number of samples analyzed) varied across the area that was potentially affected by 

the collapse of the WTC buildings.  For this objective, the PCMe data were aggregated over 

statistical summary areas (SSAs) (Figure 1-1).  Statistical summary areas were based on census-

block groups that were modified by EPA for the purposes of describing the PCMe data.   

 

Spatial pattern analyses at the site level and building level were performed using methods of point 

pattern analysis (Cressie, 1993; Bailey and Gatrell, 1995).  In point pattern analysis, the focus is 

on the location of exceedances.  The goal is to determine if there are any geographic patterns 

exhibited by the location of the exceedances.  In general, there are two types of geographic 

patterns that are possible: clustering and dispersion (or regularity).  Clustering is exhibited by the 

tendency for points to be located in clumps, while dispersion refers to the tendency for points to 

be more regularly distributed than would be expected, based on chance.  An example of a point 

pattern that exhibits dispersion is a square grid.  The primary focus in this study is on identifying 

clusters of exceedances, which could indicate an asbestos source, or otherwise lead to an 

explanation for the elevated air borne asbestos concentrations. 

 

Analysis of the PCMe data at the SSA scale was performed using methods from spatial 

autoregression analysis.  Spatial autoregression is a type of statistical regression analysis that 

considers the spatial autocorrelation exhibited by the data, if any.  In the present context, 

(positive) spatial autocorrelation is the tendency for SSAs with similar rates of PCMe 

exceedances to be located near each other.  Classical regression analysis assumes the data are 

independent and identically distributed (iid)6.  Data that exhibit spatial autocorrelation violate the 

                                                      
6 Many methods of classical statistical analysis are developed mathematically based, in part, on 

the assumption that the data are independent and identically distributed.  The assumption of 

independence requires that the probability that an observation from the sample takes on a given 

value is not dependent upon the values of any of the other observations.  The identically 



independent portion of this assumption.  Therefore, using classical regression methods with data 

that exhibits spatial autocorrelation will affect the accuracy of statistical tests that are made with 

the data; for example, testing the rates of PCMe exceedances between SSAs could lead to 

erroneous conclusions.   

 

B.3.1.3 PCMe Exceedance as a Spatial Poisson Process 

 

The spatial analysis of the PCMe exceedances that is presented in Sections B.2.2.2 and B.2.3 is 

based on the assumption that the exceedances can be modeled as a Poisson distribution (Figures 

B-8 and B-9).  The rationale for this assumption is as follows.   

 

The spatial analysis of the PCMe data focuses on the spatial distribution of PCMe exceedances, 

rather than on the spatial distribution of the PCMe concentration.  When analyzed in this way, the 

PCMe data are converted into one of two values: one (concentrations > 0.0009 f/cc) or zero 

(concentrations < 0.0009 f/cc).  In this format, the data can be modeled with a binomial 

distribution (DeGroot, 1989): 

 

  ( ) ( ) ( ) xnxx
n pppnxf −−= 1,|      Equation B-1 

 

The expression on the left hand side of Equation B-1 is interpreted as the probability of observing 

x exceedances out of n air samples (i.e., tests), given the probability of observing an exceedance 

from any given test (p).  The variable x therefore is limited to positive integers between zero and 

the sample size (i.e., x = 0, 1, 2, …., n).  The parameter p is estimated from the data; it is the total 

number of exceedances divided by the number of samples (n).  The ( )x
n  symbol represents the 

number of combinations of n objects taken x at a time7.  Assuming a binomial distribution 

                                                                                                                                                              

distributed assumption requires that all of the observations are members of the same population 

(i.e., the same distribution function). 
7 In the present context, it represents the number of ways that x exceedances could be observed in n samples, when 

order is not important.  The right hand side of equation 1A equals the number of ways that x exceedances could be 

observed in a sample of size n, multiplied by the probability of observing an exceedance for any given test. 
 



provides a good fit to the PCMe exceedance data, the expected number of exceedances, given n 

samples and probability p is:  

         Equation B-2 npXE =][

 

and its variance of x is: 

  Var       Equation B-3 )1(][ pnpX −=

 

Notice that the number of exceedances will tend to increase with sample size.  The variance also 

increases with sample size.  The relationship between variance and sample size must be 

considered when  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure B-8.  Histogram for 10,000 randomly generated samples from a Poisson 

distribution with mean = 2.  The value of the sample is shown on the x-axis, the y-
axis shows the percent of the 10,000 samples that have the value indicated on the x-
axis.  A Poisson distribution is commonly used to model the occurrence of rare events 
within a fixed period of time or space.  The Poisson distribution with mean = 2 is 
positively skewed; as the mean of a Poisson random variable increases, its 
distribution approaches a normal distribution.   

 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure B-9.  Boxplot for 10,000 randomly generated samples from a Poisson 

distribution with mean = 2.  The values of the randomly drawn samples are shown on 
the y-axis.  As shown above, the boxplot for a Poisson distribution is positively skewed.  
As the mean of a Poisson random variable increases, its distribution approaches a 
normal distribution.   

 
 
 
 
 
 
 



comparing exceedance rates between areas with different sample sizes; this point is discussed 

further in Section B.3.2.2.   

 

The binomial distribution can be approximated with a normal distribution.  The advantages of 

modeling the exceedances with a normal distribution is that there are many statistical procedures 

that are based on the assumption of normality, and the variance of a normally distributed variable 

does not depend upon sample size (i.e., the variance is constant).  The normal approximation 

improves as n increases and the value of p approaches 0.5 (DeGroot, 1989).  However, the 

estimates for p for the test only and clean and test data (0.00487 and 0.00418, respectively), make 

the normal approximation untenable.  For example, the normal approximation would generally be 

considered acceptable for a comparison of the exceedance rates between SSAs provided the 

following relationship was satisfied for each of the SSAs: 

 

     5>× SSASSA rateexceedancen

 

where, nSSA is the number of samples in the SSA, and exceedance rateSSA is the number of 

exceedances located in the SSA divided by nSSA.  This requirement would be satisfied for just one 

SSA for the test only data, and five SSAs for the clean and test data. 

 

The Poisson distribution was developed for modeling rare events, such as the exceedance rates 

observed in the WTC cleanup program.  When n is large and p is very small, the binomial 

distribution can be approximated by a Poisson distribution (DeGroot, 1989): 
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=       Equation B-4 

 

The variable x is limited to positive integers between zero and the sample size (i.e., x = 0, 1, 2, 

…., n).  The parameter λ is estimated from the data; it is the total number of exceedances divided 

by the number of samples (n) (same as the binomial distribution).  The mean and variance of a 

Poisson distribution are equal to the parameter λ, and do not depend upon the sample size.  In 

Section B.3.2.2 the Poisson distribution is shown to provide a better fit to the data than the 

binomial.   

 



Possible differences in the intensity of exceedance events across the site is assessed in Section 

B.3.2, using methods from point pattern analysis (Section B.3.2.1) and spatial autoregression 

(B.3.2.2); possible differences on a smaller scale (e.g., within SSAs) are assessed using additional 

methods from point pattern analysis (Section B.3.2.3).  The effect of sample size (i.e., number of 

samples per building) on PCMe exceedance is also considered in Section B.3.2. 

 

B.3.2 Spatial Analysis 

 

The locations of PCMe exceedance were described by first assessing the overall (global) pattern 

of the exceedances using methods from point pattern analysis.  The data were then aggregated by 

SSAs and analyzed using methods from spatial autoregression to describe the spatial distribution 

of PCMe exceedances at the SSA-scale, and to estimate the differences in the rate of PCMe 

exceedances between the SSAs.  The local pattern of the exceedances was assessed by measuring 

the level of spatial autocorrelation, or spatial dependence, exhibited by the data, using additional 

methods from point pattern analysis.  Finally, the vertical distribution of PCMe exceedances is 

analyzed at the site level using frequency tables and Poisson regression.  When interpreting the 

results of this analysis, it should be kept in mind that participation in the WTC Dust Cleanup 

Program was on a voluntary basis.  Therefore, the data were not derived from a random sample, 

nor do they represent a census of all the buildings and residences within the sampled area.  (In the 

context of point pattern analysis, point patterns derived from a random sample and census are 

referred to as sampled point patterns and mapped point patterns, respectively.)  With this in 

mind, the global and local patterns of PCMe exceedance are interpreted in relation to the location 

of the sampled buildings. 

 

B.3.2.1 Site-Level (Global) Pattern of PCMe Exceedance 

 

For the point pattern analysis, the PCMe data were aggregated at the building level by counting 

the number of sample results that exceeded the heath-based benchmark of 0.0009 fibers/cc for 

each building (i.e., the number of exceedances).  The term exceedance event is used to refer to 

buildings that contain at least one PCMe exceedance.  Consistent with the approach used in the 

analysis of the dust wipe data, the PCMe exceedances were grouped into clean and test and test 

only categories.  Figures B-10 and B-11 show the location (centroids) of the 408 buildings that 



contain at least one residence or common area that was cleaned and tested (clean and test 

buildings), and the 219 buildings that contain at least one residence that was tested only (test only 

buildings), respectively.  Note that the two groups of buildings are not mutually exclusive: 

approximately 39% of the clean and test buildings contain at least  



 

Figure B-10.  Centrographic statistics for the clean and test data.  Clean and test data refers to samples collected from re
the residents had requested EPA to clean their residences and test their indoor air for asbestos.  Centrographic statistics a
dimensional counterparts of common one-dimensional summary statistics; they describe global characteristics of the dat
represent statistical summary areas (SSAs); hatching indicates SSAs where PCMe data was not collected.  Two-dimensi
statistics are indicated by stars (mean center, or average of X and Y coordinates) and diamonds (median center, median 
coordinates).  The figure indicates the geographic center of the location of the 37 exceedances is shifted towards the sou
the geographic center of the clean and test buildings.  Comparison of the median center and the arithmetic mean center 
exceedances indicates that the location of the exceedances is ‘skewed’ slightly towards the north.  Comparison of the sta
deviational ellipses, which illustrate the dispersion of events around their mean centers, indicates that the pattern of exce
more evenly distributed across lower Manhattan than the pattern of clean and test building locations.  The ellipse for the
buildings is more elongated in the north-south direction, indicating that the building locations are more dispersed in the 
direction than they are in the east-west direction. The median number of samples collected from clean and test buildings
least one exceedance (119) is an order of magnitude higher than the median number of samples collected from clean and
that had no exceedances (12).  The shades of green assigned to the statistical summary areas (SSAs) indicate the number
collected from each SSA.  The four shades of green correspond to quartiles of the number of samples; the darkest green 
SSAs with the largest number of samples (i.e., 4th quartile).  There is a strong relationship between the sample size and t
exceedances; 36 of the 38 exceedances are located in SSAs with sample sizes above the median.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure B-11.  Centrographic statistics for the test only data.  Test only data refers to samples collected at residents where resid
requested to have their indoor air tested for asbestos but declined to have their residences cleaned.  The figure indicates tha
geographic center of the location of the 8 exceedances is shifted towards the south relative to the geographic center of the test only 
buildings.  Comparison of the median center and the arithmetic mean center for the exceedances indicates that the location of the 
exceedances are ‘skewed’ slightly towards the east.  The standard deviational ellipse for the test only buildings shows that the exceed
are more dispersed in the north-south direction, while the exceedances are dispersed more in the east-west direction.  The east-west tr
may be attributable to the higher sample sizes associated with buildings where the exceedances were measured.  The median number 
samples in the 8 test only buildings that had at least one exceedance is 19.5 (range of 9 to 38 samples); the median number of sample
the test only buildings without exceedances is 7 (range of 3 to 256 samples).  The shades of green assigned to the statistical summary
(SSAs) indicate the number of samples collected from each SSA.  The four shades of green correspond to quartiles of the number of 
samples; the darkest green is assigned to SSAs with the largest number of samples (i.e., 4th quartile). There is a strong relationship be
the sample size and the location of exceedances; all of the exceedances are located in SSAs with sample sizes above the median. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



one residence that was tested only, and approximately 75% of the test only buildings contain at 

least one common area or residence that was cleaned and tested.   

 

Centrographic statistics were used to describe the first order, or global pattern of the distribution 

of the exceedance events.  The centrographic statistics that are described here are similar to the 

traditional univariate statistics that are used to describe the location (e.g., mean, median) and 

distribution (e.g., standard deviation, skewness) of a single variable.  Centrographic statistics 

were calculated using the geographic coordinates of the centroids of the buildings.  Centrographic 

statistics were used to describe the geographic center of the exceedance events, their distribution 

in space, and the orientation of the distribution.  The centrographic statistics for the exceedance 

events were then compared to the centrographic statistics for the buildings that were sampled. 

 

Figures B-10, B-11, and B-12 show the mean centers, median centers, and standard deviational 

ellipses for the clean and test buildings and the clean and test exceedance events, test only 

buildings and test only exceedance events, and the unique test only buildings (described below), 

respectively.  The X and Y coordinates of the mean center equal the mean of the X coordinates 

and the mean of the Y coordinates, respectively, of the building centroids.  The coordinates of the 

median center equal the median of the X and Y coordinates of the building centroids.  The 

median is less influenced by geographic outliers (buildings that are located far from the median or 

mean center of buildings) than the mean.  The median is often used when there are a few extreme 

locations that could greatly influence the mean and distort what might be considered the 

geographic center of the building locations.    

 

A standard deviational ellipse is a measure of the dispersion of the buildings around the mean 

center in two dimensions.  Comparing the standard deviational ellipse for the exceedance events 

to the standard deviational ellipse for the location of the sampled buildings provides a qualitative 

comparison between their geographic centers, and the magnitude and direction of their dispersion.  

The method for calculating the standard deviational ellipse is described in Appendix C.   

 

Figure B-11 shows the locations of the 219 test only buildings and 8 exceedance events (one 

exceedance event is obscured by the symbol for the median center of the exceedance events).  

The mean center for the exceedance events, which is shifted to the east and north of the median 

center, is influenced by the two exceedance events that are located near the eastern boundary of 

the potentially affected area, and the one event near the northern boundary.  The location, shape 



and approximately north-south orientation of the standard deviational ellipse for the test only 

buildings reflect the high density of  



 

Figure B-12. Centrographic statistics for the unique test only buildings.  Unique test only buildings 
are buildings that do not contain any residences or common areas that were cleaned.  The unique test 
only buildings tend to be located north of the test only buildings, and are dispersed in a northeast-
southwest direction.  No PCMe exceedances were measured in any unique test only building.  The 
lack of exceedance events could be attributed, in part, to the low number of samples collected from 
these buildings.  The average number of samples collected from the unique test only buildings is 6.5, 
with a minimum of 3 and a maximum of 12; twenty-three of the 54 unique test only buildings had 5 
or fewer samples, and 47 had fewer than 10.  In contrast, the 8 test only buildings with one or more 
exceedance had an average of 22 samples, with a minimum of 6 and a maximum of 38.  The shades 
of green assigned to the statistical summary areas (SSAs) indicate the number of samples collected 
from each SSA.  The four shades of green correspond to quartiles of the number of samples; the 
darkest green is assigned to SSAs with the largest number of samples (i.e., 4th quartile). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



sampled buildings that are located northeast, east and southwest areas of the WTC site.  In 

contrast, the spatial pattern of the test only exceedances events approaches an east-west oriented 

line; the lone exceedance event located near the northern boundary of the site has a very large 

influence on the shape of the ellipse.  The east-west trend indicated in Figure B-11 may be 

attributable to the higher sample sizes associated with buildings where the exceedances occurred.  

The median number of samples in the 8 test only buildings that had at least one exceedance is 

19.5 (range of 9 to 38 samples); the median number of samples for the test only buildings without 

exceedances is 7 (range of 3 to 256 samples).    

 

Figure B-12 shows the location of the 60 buildings that contain exclusively test only residences 

(unique test only; i.e., no clean and test common areas or residences).  There were no 

exceedances in the unique test only buildings.  The geographic center of the unique test only 

buildings shows that these buildings tend to be located north of the test only buildings.  It should 

be noted that the lack of exceedance events could be attributed, in part, to the low number of 

samples collected from these buildings.  The median number of samples collected from the 

unique test only buildings is 6, with a minimum of 3 and a maximum of 21; 24 of the 60 unique 

test only buildings had 5 or fewer samples collected from them, and 52 had fewer than 10.     

 

Figure B-10 shows the locations of the 408 clean and test buildings and the 37 exceedance 

events.  The geographic center of the clean and test buildings is located northeast of the WTC 

site.  The geographic center of the clean and test buildings that had at least one exceedance is 

located east of the WTC site, and south of the geographic center of the clean and test buildings.  

The standard deviational ellipse for the clean and test buildings and the clean and test 

exceedances both indicate a north-south orientation.  The width of the standard deviational ellipse 

for the clean and test exceedances is wider than the ellipse for the clean and test buildings, 

indicating the distribution of exceedances are more dispersed in the east-west direction than are 

the clean and test building locations.  The intensity of exceedances appears to be greater south 

and east of the WTC site compared to the areas north of the WTC site.  Again, the apparent 

pattern may be attributable, at least in part, to differences in sample size.  The median number of 

samples collected from clean and test buildings that had at least one exceedance (119) is 

approximately 10 times higher than the median number of samples collected from clean and test 

buildings that had no exceedances (12). 

 



The geographic center of the exceedance events for the test only and clean and test buildings tend 

to be located south of the geographic center of the sampled buildings (Figure B-10).  Except for 

one location, the test only exceedance locations occur along an east-west line that extends across 

lower Manhattan (Figure B-11).  No obvious pattern to the clean and test exceedances is evident.  

Interpretation of the exceedance locations is complicated by the variability in the number of 

samples that were collected between buildings.   

 

The possible differences in intensity of exceedance events across the site were further addressed 

using methods from spatial autoregression (Section B.3.2.3) and using additional methods from 

point pattern analysis (Section B.2.2.3).  The effect of sample size (i.e., number of samples per 

building) on PCMe exceedance is also considered in both of the analyses. 

 

B.3.2.2 SSA-Level Pattern of PCMe Exceedance 

Spatial distribution of PCMe Exceedance 

 

The primary objective of this analysis is to describe the spatial distribution of PCMe exceedances 

at the SSA-scale, and to estimate the differences in the rate of PCMe exceedances between the 

SSAs.  Samples from test only and clean and test residences were collected from 36 and 38 SSAs, 

respectively.  Rates were calculated for each SSA as the number of exceedances within the SSA 

divided by the number of results for PCMe for the SSA.  Rates were used to account for the large 

difference in sample sizes between the SSAs.   

 

Exceedance rates varied from 0 to 0.060 for the test only data and from 0 to 0.058 for the clean 

and test data.  More than one-half of the SSAs had no exceedances for the test only (30/37, or 

81% with 0 exceedances) and clean and test data (23/39, or 60% with 0 exceedances).  The 

spatial distribution of the PCMe exceedance rates for the test only and clean and test data are 

shown in Figures B-13 and B-14, respectively.  For the test only data, the SSAs with the highest 

rates (upper quartile) coincide with the distribution of the exceedance events; every SSA with one 

or more exceedance falls in the upper quartile of the exceedance rate, which further indicates the 

rareness of the exceedance events.  SSAs that fell within the upper quartile contained 1 – 9 

exceedance events. 

 



For the clean and test data, SSAs that fell within the upper quartile of exceedance rates for the 

clean and test data contained 2 to 32 exceedance events.  All but 4 SSAs had exceedance rates 

less than 1%; the highest rate of exceedances was 6%.  Statistical summary areas with the highest 

rates are located north and east of the WTC site.  Figure B-14 indicates there is a tendency for 

SSAs with similar rates to be located near each other (i.e., positive spatial autocorrelation).  

Measuring spatial autocorrelation in  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure B-13. Spatial distribution of PCMe exceedance rates for the test only data, by statistical 

summary areas.  Test only data refers to samples collected at residents where residences requested to 
have their indoor air tested for asbestos but declined to have their residences cleaned.  The exceedance 
rate for each statistical summary area (SSA) equals the number of PCMe results for the SSA that 
exceeded the health-based benchmark, divided by the number of samples collected from the SSA.  
Quartiles of the PCMe exceedance rate are shown.  Statistical summary areas with one or more PCMe 
exceedance fall in the upper quartile of the exceedance rate, which indicates the rareness of the 
exceedance events. Six of the seven SSAs that had one or more exceedance are located east and north of 
the WTC site; the seventh SSA, which is located south west of the WTC had one exceedance. 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure B-14.  Spatial distribution of PCMe exceedance rates for the clean and test data, by 

statistical summary areas.  Clean and test data refers to samples collected from residences 
where the residents had requested EPA to clean their residences and test their indoor air for 
asbestos.  Quartiles of the distribution of PCMe exceedance rates are shown.  Statistical 
summary areas (SSAs) with one or more exceedances fall in the upper two quartiles, indicating 
the rareness of the exceedance events.  Statistical summary areas with exceedance rates in the 
upper quartile of the distribution of PCMe exceedances are located north and east of the WTC 
site.  Modest positive spatial autocorrelation in the exceedance rates is indicated by the 
tendency for SSAs with similar rates to be located near each other. 

 
 
 
 
 
 
 
 
 
 
 
 



the PCMe exceedances is made difficult by the low rate of exceedances and the lack of data for 

some SSAs (discussed further in Appendix D).   

 

Fitting Poisson models to PCMe exceedances 

 

The binomial and Poisson distributions are reasonable statistical models for the PCMe 

exceedances (Section B.2.1.3).  Binomial and Poisson distributions were fit to log-transformed 

rates8 for the test only and clean and test data (second and third columns of Tables B-8 and B-9, 

respectively).  The assumption of equal mean and variance, which is a feature of the Poisson 

model (Section B.2.1.3), was assessed by fitting a negative binomial model to the data (Appendix 

D).  The estimates of the dispersion parameters for the fitted negative binomial models (Tables B-

8 and B-9) indicated that the assumption of equidispersion may be very poor for the test only and 

clean and test exceedance rates (i.e., the mean and variance of the rates may not be constant 

across the SSAs).  Violation of the equidispersion assumption has affects similar to violations of 

the constant variance assumption with a normal distribution model (Cameron and Trivedi, 1998)9.  

A consequence of the violation is a tendency for a loss of power to detect actual differences in 

PCMe rates between SSAs (Griffith and Layne, 1999).  Similarly, failure to consider spatial 

autocorrelation present in data can lead to a loss of statistical power (Griffith and Layne, 1999). 

 

Very often, remedial measures designed to reduce one type of model violation also reduce the 

violation of other assumptions.  With this in mind, a spatial filter approach was used to account 

for the spatial autocorrelation present in the data; the approach is described briefly in Appendix D 

and thoroughly in (Griffith, 2002).  Estimates of the parameters for the binomial and Poisson 

models with the spatial autocorrelation filter added, for the test only and clean and test data, are 

shown in the last three columns of Tables B-8 and B-9, respectively.  The parameter estimates for 

                                                      
8 The Poisson models were actually fit to log-transformed counts of exceedances, with the log of 

the number of samples included in the model as an offset variable.  This is mathematically 

equivalent to fitting the Poisson model to the log-transformed rates; see Appendix C for further 

explanation. 
9 Violation of the constant variance assumption with the normal distribution model affects the 

significance level (p-values) reported for statistical tests, such as the comparison of the PCMe 

rates between SSAs.  The actual error rates (i.e., type I error rate, α) will tend to be larger than the 

intended error rate (Griffith and Layne, 1999). 



the binomial and Poisson models are very close for both sets of exceedance rates; however, the 

Poisson model provides  



 
 
 
 
Table B-8.  Model Estimation Results for the Log-transformed Test Only PCMe Exceedance 

Rates. 
 

The binomial and Poisson distributions are plausible models for the PCMe exceedances as both 
distributions can be used to describe count data.  A spatial filter derived from the spatial 
autocorrelation that is expressed by the data was added to both models.  Addition of the filter has 
a substantial impact on the parameter estimates.  The apparent violation of the equidispersion 
assumption (i.e., equal mean and variance) of the Poisson model was rendered inconsequential 
after the spatial filter was added (see Appendix C for details).  The Poisson model is more 
appealing for the PCMe exceedances due to the rarity of their occurrence and provides a better fit 
to the data, accounting for approximately twice the variance that is explained by the binomial 
model. 
 

 Prior to Considering 
Spatial Autocorrelationa With Spatial Filter Added to Modelsa 

Model Parameter 
Estimate 

Equi-
dispersion 

Parameter 
Estimate 

Equi-
dispersion 

% Variance 
Accounted for 

Binomial -5.3183 NA -6.0572 NA 30% 
Poisson -5.3232 NA -6.0625 NA 60% 
Negative binomialb -5.0964 4.6066 -6.1506 0.4476  
 

aSpatial autocorrelation is accounted for in the statistical models using an eigenfunction spatial filter (Griffith, 2002); 
see Appendix B for details.  
bA negative binomial distribution was fit to the PCMe exceedances to assess the assumption of equidispersion (equal 
mean and variance), which is a feature of a Poisson random variable. 



 
 
 
 
  

Table B-9.  Model Estimation Results for the Log-transformed Clean and Test PCMe 
Exceedance Rates. 

 
The binomial and Poisson distributions are plausible models for the PCMe exceedances as both 
distributions can be used to describe count data.  A spatial filter derived from the spatial 
autocorrelation that is expressed by the data was added to both models.  The apparent violation 
of the equidispersion assumption (i.e., equal mean and variance) of the Poisson model was 
reduced by the addition of the spatial filter to the model (see Appendix C for details).  The 
Poisson model is more appealing for the PCMe exceedances due to the rarity of their 
occurrence; both models explain approximately the same percent of the variance in the data. 
 
 Prior to Considering 

Spatial Autocorrelationa With Spatial Filter Added to Modelsa 

Model Parameter 
Estimate 

Equi-
dispersion 

Parameter 
Estimate 

Equi-
dispersion 

% Variance 
Accounted for 

Binomial -5.4713 NA -5.9347 NA 40% 
Poisson for rates -5.4756 NA -5.9383 NA 40% 
Negative 
binomialb for rates 

-5.2098 2.8692 -c   

 

aSpatial autocorrelation is accounted for in the statistical models using an eigenfunction spatial filter 
(Griffith, 2002); see Appendix B for details.  
bA negative binomial distribution was fit to the PCMe exceedances to assess the assumption of 
equidispersion (equal mean and variance), which is a feature of a Poisson random variable. 
cThe negative binomial not estimable; however, the deviance measure for the Poisson model (1.38) 
indicates overdipsersion has been reduced. 



a much better fit for the test only exceedance rates; the fit is approximately the same for the clean 

and test exceedance rates. 

 

Five buildings accounted for 6,470 (27%) of the clean and test sample results.  A subset of the 

clean and test data was created by removing these 6,470 measurements from the database.  The 

binomial and Poisson models were refit to the data to assess the effect of these five buildings on 

the estimates of the model parameters, and their effect on the goodness-of-fit of the models to the 

data.  The parameter estimates differed slightly, and both models continued to account for 

approximately 40% of the variance in the data.  Based on these results, the spatial 

autocorrelation-filtered Poisson models with parameters -5.94 and -6.06 (log-transformed rates of 

exceedances) were used to describe the clean and test and test only data, respectively.  

 

Comparison of PCMe Exceedance Rates 

 

Exceedance rates for each SSA with a sample size of 30 or more were compared to each other to 

assess whether or not statistically significant differences exist.  Aggregate sample sizes less than 

30 were considered too small to include in the comparisons.  The sample size restriction left 22 

SSAs for the test only data and 32 for the clean and test data.  Comparisons were based on the 

spatial autocorrelation-filtered Poisson models described above.  These comparisons essentially 

consist of calculating the difference between the rates for two SSAs, and determining if the 

absolute value of the difference is statistically different from zero.  In general, the differences in 

the exceedance rates will approach a normal distribution as the means for the rates increases.  The 

normal approximation is very good when the number of exceedance for each SSA exceeds 4.  

The low number of exceedances in most SSAs indicated the normal approximation would be 

poor.  This was confirmed by a simulation experiment which showed that the normal distribution 

would not be reasonable for either the test only or clean and test exceedance rates comparisons.  

Therefore, the significance of each of the pairwise comparisons between SSA exceedance rates 

was determined by nonparametric simulation analysis.  The simulation experiments are described 

in Appendix D. 

 

Pairwise comparisons that were significant at type I error rates (α) of 0.01, 0.05 and 0.10 are 

shown in Appendix D, Tables D-1 and D-2.  The type I error rates reported are global error rates 

that take into consideration the multiple comparisons that are being made.  When performing 

multiple statistical tests, the probability of rejecting the null hypothesis when it is true (Type I 



error, α) increases.  In the present context, this means the probability of incorrectly concluding 

that a difference exists between the exceedance rates for two SSAs would be greater than 

intended, unless the error rate was adjusted to compensate for the multiple tests.  The error rates 

reported in Tables D-1 and D-2 reflect a Bonferroni adjustment to account for the multiple tests 

(see Appendix D for details). 

 

The comparisons of the test only exceedance rates between SSAs indicate there are three SSAs 

with exceedance rates that are statistically significantly different (at α = 0.01) than the exceedance 

rates observed in approximately one-half of the other SSAs (Figure B-15a)  

 

Results of the comparison of the clean and test exceedance rates between SSAs are indicated in 

Figure B-15b.  The number of significant pairwise comparisons at α = 0.01 are shown for SSAs 

that had one or more exceedance.  Three SSAs that differ from the majority of the other SSAs are 

located east of the WTC.  The number of exceedances for these three SSAs range from 17 – 32; 

the exceedance rates range from 0.006 to 0.059.   

 

The SSA-level analysis has shown that the Poisson model provides a reasonable model for the 

PCMe exceedance rates after the model is modified to account for the positive spatial 

autocorrelation that is exhibited by the exceedance rates.  The comparisons of the exceedance 

rates indicate that the rates are not constant across the SSAs.  Statistical summary areas having 

the highest rate of PCMe exceedances are located east of the WTC site. 

 

B.3.2.3 Building-Level Pattern of PCMe Exceedance 

 

Two methods for testing for the presence of clusters in the exceedance events, Nearest Neighbor 

distances and Ripley K functions, are briefly described in this section.  Both methods can be used 

to produce plots of the spatial distribution of sample locations, and the spatial distribution of 

PCMe exceedance locations.  Visual comparison of these plots can provide useful qualitative 

information regarding the presence or absence of spatial clustering of the PCMe exceedance 

events.  A formal statistical test for spatial randomness is available for the nearest neighbor 

distance.  A semi-quantitative, graphical method is used with the Ripley K function to test for 

spatial randomness.  The underlying assumption behind both  



methods, as they are employed in this analysis, is that PCMe exceedances follow a homogeneous 

spatial Poisson process as described in Section B.2.1.3.   

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B-15a. Significant differences between estimated exceedance rates for test 
Estimates are based on the spatially-filtered Poisson model (see Section 3.2.3.2 and
D for details).  The number of significant pairwise comparisons at an experiment
(with a Bonferroni adjustment) are shown for SSAs that had one or more exceedan

o y data.  
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ces.  

Comparisons with SSAs with sample sizes less than 30 (indicated in figure by cross-hatching, 
and in figure legend by “n<30”) were deemed unreliable and were therefore not included in the 
analysis.  The 3 SSAs that were found to have the most number of significant comparisons are 
located east of the WTC.  The numbers of exceedances for these three SSAs range from 2 to 9; 
their exceedance rates range from 0.021 to 0.060.  The spatial pattern exhibited above is 
similar to the pattern of exceedance rates that is shown in Figure 3-13 however, 4 of the 7 
SSAs with exceedance rates in the 4th quartile (Figure 3-13) were found to be significantly 
different from 5 or fewer of the other SSAs.   
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Figure B-15b. Significant differences between estimated exceedance rates for 
clean and test data.  Estimates are based on the spatially-filtered Poisson model 
(see Section 3.2.3.2 and Appendix D for details).  The number of significant 
pairwise comparisons at an experiment-wise α = 0.01 (with a Bonferroni 
adjustment) are shown for SSAs that had one or more exceedances.  Comparisons 
with SSAs with sample sizes less than 30 (indicated in figure by cross-hatching, 
and in figure legend by “n<30”) were deemed unreliable and were therefore not 
included in the analysis.  Three of the SSAs that were found to have the most 
number of significant comparisons are located east of the WTC.  The numbers of 
exceedances for these three SSAs range from 17 to 32; their exceedance rates 
range from 0.006 to 0.059.  The spatial pattern exhibited above is similar to the 
pattern of exceedance rates that is shown in Figure 3-14 however, 3 of the 
9 SSAs with exceedance rates in the 4th quartile (Figure 3-14) were found to be 
significantly different from 4 or fewer of the other SSAs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
The location of the test only and clean and test buildings are not evenly distributed across the 

potentially affected area.  For example, the buildings can be grouped into five sub areas.  The 

largest dimension of these areas varies from approximately 750–1,500 meters.  Therefore 

interpretation of these analyses should be limited to distances of 500–750 meters, as distances 

greater than these may be overly influenced by global trends in the events, rather than the local 

spatial dependence between events. 

 

 Nearest Neighbor Method 

 

In nearest neighbor analysis, the focus is on the distance between the exceedance events.  The 

observed nearest neighbor distance dNN  is the average distance between each exceedance 

events and its closest neighbor (i.e., another exceedance event).  It is calculated by determining 

the distance between each event and its nearest neighbor, then taking the average of the distances.  

The observed dNN  is compared to the average distance between nearest neighbors that would 

be expected if the events were randomly distributed in space (i.e., if they followed a spatial 

Poisson process).  The expected distance is provided by: 

 

  
λ̂2

1)( =NNdE ;         Equation B-5 AN /ˆ =λ

 

where, E(NNd)=expected average distance between nearest neighbors, under the assumption that 

the events follow a spatial Poisson process; λ=mean, or intensity, of the spatial Poisson process, 

which is estimated by the total number of events (N), divided by the area of the site (A).  The 

ratio of the observed nearest neighbor distance to the expected nearest neighbor distance yields 

the nearest neighbor index (NNI): 

 

   ( ) [ ]NNdEdNNNNI =     Equation B-6  

 

Nearest neighbor indexes equal to one indicate complete spatial randomness (CSR; i.e., 

homogeneous Poisson process); NNIs less than one indicate spatial clustering, and NNIs greater 

than one indicate dispersion, or regular spacing (e.g., a square grid). 

 



An important concern in this analysis is how much lower (greater) than one does the NNI have to 

be to conclude the events are clustered (dispersed).  A test for the significance of NNI (i.e., lack 

of clustering or dispersion in the location of PCMe exceedances) may be performed by computing 

the standardized estimate of the NNd (Z) (Equation B-7) and then comparing the calculated Z to a 

table of the standard normal distribution (Clark and Evans, 1954):   
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Where dNNSE =standard error of the estimate of the mean nearest neighbor distance: 

    

  
( )

N4
4

dNN π
π−

=SE       Equation B-8 

 

A shortcoming of the above test is that it assumes the data are a random sample from the 

population (Bailey and Gatrell, 1995; Dixon, 2001), which has already been determined to be 

invalid for the PCMe data.  A second shortcoming of the test is that it ignores the correlation 

between nearest neighbor distances (Cressie, 1993; Dixon, 2001).  An extreme case of the 

correlation is two exceedance events that are the nearest neighbor of each other (i.e., reflexive 

nearest neighbors).  Under the assumption of complete spatial randomness (CSR) in two 

dimensions, approximately 62% of the events of a spatial point pattern are reflexive nearest 

neighbors (Dixon, 2001).  Finally, nearest neighbor analysis assumes that exceedance events are 

from a continuous, isotropic surface.  The geographic distribution of the sampled buildings 

represent a distribution of discrete objects rather than a continuous surface, and it is not equal in 

all directions (i.e., the distribution is anisotropic).    

 

Given the shortcomings of the above approach, a numerical simulation approach was used to test 

the significance of the NNd.  The simulation approach generates a list of possible ways of 

assigning N exceedance ‘labels’ to B buildings, where N equals the number of exceedance events 

(i.e., N=8 for test only and 37 for clean and test data) and B equals the number of sampled 

buildings (i.e., B=219 for test only and 408 for clean and test data).  The observed pattern of 

exceedance events is then compared to the list of possible patterns to test the hypothesis that the 

exceedance events are randomly distributed geographically (the average NNd for the observed 



pattern of events is compared to the ranked list of NNDs for the simulated values).  If the 

observed NNd is typical of the simulated values, the null hypothesis of first order spatial 

randomness is not rejected; if the observed value is smaller or larger than most of the simulation 

NNds, the null hypothesis is rejected.   

 

Another advantage of the simulation test is it removes the assumption that the exceedance events 

follow a random spatial Poisson process.  The simulation test detects departures from spatial 

randomness, rather than departures from a specific type of random process.   

 

The numerical simulation was executed by randomly selecting N buildings (without replacement) 

from the list of B buildings that were sampled for PCMe.  The NNd was then calculated for the N 

randomly selected buildings and saved.  This process was repeated 9,999 times, producing 9,999 

NNds.  The NNd that was calculated for the actual data was then added to the list of 9,999 

simulated values.  The 10,000 NNds were then ranked from lowest to highest.  A two-sided test 

of the null hypothesis that the exceedance events are consistent with a first order spatial random 

process can be made by comparing the rank of the observed NNd divided by 10,000 to (1–α/2), 

where α is the chosen level of significance, and rejecting the null hypothesis if the simulated p-

value is greater than (1–α/2).   

 

In addition to calculating a NNI for the distances between the closest nearest neighbors (i.e., first 

order nearest neighbors), it is often informative to calculate NNIs for second, third, …, K-th 

nearest neighbors.  For example, the k=2 (second order) NNI is the ratio of the average distance 

between each PCMe exceedance and its second nearest neighbor ( ) 2=kDNN , and the expected 

NND for k=2 ( ) :  [ ] 2=kNNdE
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Evaluating the average nearest neighbor distance at orders greater than one provides a description 

of the interaction between events at increasing separation distances.  Equations B-8 and B-9 are 

appropriate for first order NNds; significance tests for higher order NNds have not been 

developed.  

 



The NNIs for the exceedance events should be compared to the NNIs for the sampled buildings to 

account for the nonrandom sampling methods that were employed.  A relative NNI is calculated 

as the ratio between the NNI for the exceedance events and the NNI for the sampled buildings.  

Relative NNIs less than (greater than) one indicate clustering (dispersion) of events that is not 

explained by the spatial distribution of the sampled buildings.  The relative NNI is a qualitative 

measure; statistical tests for significance are not available. 

 

 Nearest Neighbor Results 

 

The simulation test for the significance of the test only NNd failed to reject the null hypothesis of 

first order spatial randomness, although the small number of exceedances (8) should be 

considered.  The simulation test for the clean and test exceedance events also failed to reject the 

null hypothesis of first order spatial randomness (p=0.33).  The p-value indicates that 33% of the 

simulated patterns of clean and test exceedance events had NNds smaller than the observed NNd.  

These results argue against significant spatial clustering of the PCMe exceedances at the site (i.e., 

more than would be expected by chance).   

 

Table B-10 shows the NNI and relative NNI for the first 5 ‘orders’ of neighbors.  The table 

indicates that the test only events are more dispersed than the test only buildings.  These results 

should be interpreted with caution due to the small number of test only exceedance events (8).  

The clean and test exceedance events exhibit clustering that is consistent with the clustering 

observed in the sampled buildings.  Figure B-16 shows the NNI for the first 20 orders of 

neighbors.  The test only and clean and test events plot above the sampled buildings, indicating 

that the events are not clustered.  At higher orders of neighbors, the clean and test events are 

slightly more dispersed relative to the spatial distribution of sampled buildings.  The results for 

higher orders also should be interpreted with caution due to the low number of exceedances (37).  

Overall, results from the nearest neighbor method lead to a rejection of the null hypothesis that 

the exceedance events are clustered.   

 

 Ripley’s K Function  

 

Ripley’s K function (K function) is another method for assessing whether the exceedance events 

are clustered.  While the NNd looks at the distance between nearest events at increasing orders, 

the K function looks at the number of neighbors at increasing distances.  The number of 



neighbors is determined by drawing a circle of radius r around each event and counting the 

number of other events (‘neighbors’) that fall within the circle (Figure B-17).  This is repeated for 

every event.  Ripley’s K function for distance r equals the total number of neighbors that were 

counted over all the events: 
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Table B-10.  Nearest Neighbor Statistics for the PCMe Exceedances. 
 

The nearest neighbor distance (NNd) for order 1 is the average distance between the 
location of each PCMe exceedance and its nearest neighbor.  Second order NNds 
correspond to the average distance between the location of each PCMe exceedance and 
its second nearest neighbor, etc.  Nearest neighbor indexes (NNIs) equal the NNd 
divided by E[NNd].  NNIs less than (greater than) 1 indicate spatial clustering 
(dispersion) of PCMe exceedances.  The NNIs for the spatial distribution of sampled 
buildings indicate the buildings tend to be clustered, which is typical for the 
geographical distribution of buildings in an urban environment.  Proper interpretation 
of the NNIs for the exceedances requires comparing the nearest neighbor indexes 
(NNIs) for the exceedances to the NNI for the sampled buildings.  The relative NNIs 
for the clean and test and test only PCMe exceedances indicate a lack of spatial 
clustering (i.e., they are greater than 1).  The results shown are approximate; the 
E[NNd] assumes the PCMe data were gathered using random sampling methods, or the 
that the entire population was measured; neither assumption is valid given the data 
were obtained by voluntary participation in the WTC dust cleanup program. 
 

Test Only Buildings Test Only Exceedances 
Order NNda E[NNd]b  NNIc NNda E[NNd]b  NNIc Rel-NNId 

1 50.87 62.10 0.82 406.42 324.91 1.25 1.53 
2 73.80 93.15 0.79 725.19 487.37 1.49 1.88 
3 91.54 116.44 0.79 910.49 609.21 1.49 1.90 
4 110.03 135.84 0.81 1071.27 710.74 1.51 1.86 
5 124.26 152.82 0.81 1253.63 799.59 1.57 1.93 

Clean and Test Buildings Clean and Test Exceedances 
Order NNda E[NNd]b  NNIc NNda E[NNd]b  NNIc Rel-NNId 

1 33.74 45.50 0.74 118.45 151.08 0.78 1.06 
2 52.59 68.24 0.77 170.72 226.62 0.75 0.98 
3 65.61 85.31 0.77 224.41 283.28 0.79 1.03 
4 76.22 99.52 0.77 278.31 330.49 0.84 1.10 
5 85.79 111.96 0.77 326.16 371.80 0.88 1.14 

 

aNNd: nearest neighbor distance (meters) 
bE[NNd]: expected nearest neighbor distance, under assumption of complete spatial randomness (CSR) 
cNNI: nearest neighbor index 
dRel-NNI: relative nearest neighbor index=NNI for exceedances/NNI for all buildings 
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 Figure B-16.  Nearest neighbor analysis for the PCMe asbestos data.  The nearest neighbor index (NNI) is 

the ratio of the observed nearest neighbor distance (NNd; average distance between each PCMe exceedance 
and its closest neighbor) to the expected value of the NNd, under the assumption of complete spatial 
randomness (CSR).  A NNI of 1 indicates a random spatial distribution of events; NNIs < 1 indicate 
clustering, NNIs >1 indicate dispersion (e.g., spatial distribution of PCMe exceedances on a square grid).  
The x-axis of the figure indicates the average distance between neighbors of increasing orders; e.g., the NNI 
of order =2 is the ratio of the average distance between each PCMe exceedance and its second closest 
neighbor, and the expected distance between neighbors of order = 2.  The NNIs for the building locations 
indicate spatial clustering at small spatial scales (i.e., low orders).  The buildings approach a random 
distribution (i.e., NNI = 1) at larger spatial scales (i.e., higher orders).  This pattern is typical of the 
geographic distribution of buildings in an urban landscape.  The NNIs for the clean and test exceedances are 
very similar to the NNIs for the clean and test buildings;, up to order =5, indicating a lack of spatial 
clustering of the exceedances, relative to the building locations; clean and test exceedances events appear to 
be randomly distributed among the sampled clean and test building locations.  At orders greater than 5, the 
clean and test exceedance events appear to be spaced further apart on average than expected for a random 
distribution.  However, given the small number of clean and test exceedances (37), the NNIs at higher orders 
should be interpreted with caution.  The test only exceedance events appear to dispersed; however the very 
low number of test only exceedance events (8) preclude drawing definitive conclusions.  All of the test only 
exceedances occurred in buildings that also contained at least one residence that was also cleaned and tested.  
Furthermore, the analysis of spatial trends (further discussed in Section 3.2 of the report) indicate that 
buildings with only test only residences (unique test only) tend to be located north of the buildings that also 
contained clean and test residences.  This difference between the spatial distribution of the test only and 
unique test only buildings probably contributes to the dispersion indicated by the NNI for the test only 
exceedance events. 
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Figure B-17. Calculation of the Ripley K function.  The Ripley K function is 
estimated by counting the number of other exceedance events that are located within a 
distance r of an exceedance event.  The calculation is repeated for every event, i, j, 
….N, where N = the number of events.  The Ripley K function for separation distance 
r is the sum of all counts over all events (Equation 6, Section 3.2.2.2.3).  Ripley’s K 
function is typically repeated for increasing separation distances and plotted vs the 
separation distances (e.g., Figures 3-11, 3-12).  Shown above is the calculation for 
two events, i and j, for six separation distances (corresponding to the six circles).  The 
concentric circles represent increasing separation distances (r).  For example, Event i: 
0 other events (i.e., other exceedances) within distance of 1 unit, 7 other events within 
a distance of 6 units; event j:  1 other event within a distance of 3 units, and 3 other 
events within a distance of 6 units. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Where, r=radius of circle that is used to define neighbors, A=area of site, N=number of 
exceedance events, dij=distance between points i and j, I=indicator variable that=1 if dij < r and 0 
otherwise. 
 

This calculation is repeated, each time increasing the radius r of the circle that is used to define 

neighbors, up to the desired maximum value of r.  

 

Interpretation of the K function is typically performed by plotting a conversion of K(r), L(r), 

versus r: 

 

  ( ) ( ) rrKrL −=
π

      Equation B-11 

 

The conversion to L(r) is made to make the plot easier to interpret.  Values of L(r) greater than 0 

indicate clustering; values less than 0 indicate dispersion.   

 

Under the assumption that the exceedance events are distributed according to a random spatial 

Poisson process, the expected number of events within distance r of a given event is: 

 

  2)]([ r
A
NrKE π=            Equation B-12 

where, N=number of events, A=area of site, and r=radius of circle that is used to define 

neighbors. 

 

The expected value of the K-function, after conversion to L(r) (Equation B-11), plots as a 

horizontal line at L(d)=0.  If the number of other exceedance events found within a distance r 

from an exceedance event is greater than E(K[r]), clustering is indicated at that distance; 

conversely, if the number of events at r is less than the expected value, dispersion is indicated. 

 

The weighted Ripley’s K function was estimated for the two groups of exceedance events, where 

the events are weighted by the number of samples that were collected from each building.  The 

weights account for the increased likelihood of measuring an exceedance in buildings where more 

samples are collected (Levine, 2002). 

 



The sampling distribution of K(r) has not been determined.  Therefore, a test for CSR was 

performed using a simulation approach that is similar to the one that was used to test the 

significance of the NNI.  The numerical simulation was executed by randomly selecting N 

buildings (without replacement) from the list of B buildings that were sampled for PCMe.  The 

values of L(r) were then calculated for the N randomly selected buildings for different values of r 

and saved.  This process was repeated 9,999 times, producing 9,999 estimates of L(r) at each 

distance, r.  Simulation envelopes were created by plotting extreme values of the simulated L(r) at 

each distance.  The significance of the estimated K-function at each distance r was made by 

comparing it to the simulation envelopes. 

 

 Ripley’s K Function Results 

 

Figures B-18 and B-19 show the K-function for the test only and clean and test events plot below 

the test only and clean and test buildings, respectively, which indicates that the exceedance events 

are more dispersed than the geographic distribution of the sampled buildings.  The exceedances 

also appear to be dispersed relative to the location of the sampled buildings, after the Ripley K 

function is adjusted to consider the number of samples that were collected from each building.  At 

separation distances greater than approximately 400 feet, the curve for the exceedances falls at or 

below the curve that corresponds to the 5th percentile of the simulated Ripley K values, indicating 

that the pattern of test only exceedances may be more dispersed than expected based on chance 

alone for a spatially random process.  However, given the small sample number of exceedances 

(n=8), these results should be interpreted with caution. 

 

The Ripley K function for the clean and test exceedances indicates that the exceedances are 

slightly dispersed relative to the location of the sampled buildings.  Some slight clustering of 

exceedance events may be indicated at the smallest separation distance considered (i.e., 

approximately 100 meters) when the exceedances are compared to the Ripley K function for the 

sampled buildings after it is adjusted to consider the number of samples that were collected from 

each building.  However, the curve for exceedance events falls between the 5th and 95th percentile 

of the simulated Ripley K values, indicating that the pattern of exceedances does not differ 

significantly from a spatially random process.  Overall, the analyses provide no convincing 

evidence of clustering in either the clean and test or test only exceedance events. 

 



B.3.2.4 Site-Level Vertical Pattern of PCMe Exceedance 

 

Analysis of the vertical pattern of PCMe exceedances was performed using contingency tables 

and by fitting Poisson regression models to the data.  Floor levels were used as a surrogate for 

elevation.  Early  
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Figure B-18. Ripley’s K plot for the test only PCMe exceedance event data.  A Ripley’s K plot is 
used to compare the number of neighbors for each exceedance event (i.e., location of building 
with at least one PCMe results > 0.0009 f/cc) to an expected number of neighbors based upon the
null hypothesis that the events are randomly distributed across the geographic landscape 
according to a homogenous spatial Poisson process (see Section 3.2.1.3 for explanation).  The 
number of neighbors is determined by drawing a circle of radius ‘r’ around each event and 
counting the number of other events (‘neighbors’) that fall within the circle.  This is repeated for 
every event.  Ripley’s K function for radius ‘r’ equals the total number of neighbors that were 
counted over all the events.  This calculation is repeated, each time increasing the size of the 
circle that is used to define neighbors; the increasing radius is shown on the x-axis.  A 
conversion of K(r) to L(r) (see Section 3.2.2.2.3 for definition) is made to make the plot more 
linear (i.e., easier to interpret).  Values of L(d) greater than 0 indicate clustering; values less than 
0 indicate dispersion.  Ripley’s K for the test only PCMe events is consistent with the nearest 
neighbor plot (Figure 3-7); the geographical distribution of the test only events exhibit less 
clustering than the test only buildings, respectively.  A weighted Ripley’s K function was 
estimated for the sampled buildings, where the events are weighted by the number of samples 
that were collected from each building.  The weights account for the increased likelihood of 
measuring an exceedance in buildings where more samples are collected.  A comparison of the 
Ripley K function for the test only events to the weighted Ripley K indicates that the 
exceedances are dispersed relative to the sampled buildings.  The location of the Ripley K plot 
for the exceedances within the simulation envelope (see Section 3.2.2.2.3 for details), which  is 
defined by the 5th and 95th percentile of the simulated Ripley K function at each distance interval 
(r), supports a conclusion that there is insufficient evidence to indicate clustering of the test only 
exceedance events.    

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B-19. Ripley’s K plot for the clean and test PCMe exceedance event data.  The Ripley’s 
K plot for the clean and test PCMe events is consistent with the nearest neighbor plot (Figure 3-
7); the geographical distribution of the clean and test events exhibit less clustering than the clean 
and test buildings.  A comparison of the Ripley K function for the clean and test events to the 
weighted Ripley K function indicates that the exceedance events appear to be slightly more 
clustered than the sampled buildings, particularly at short distances.  The location of the Ripley 
K plot for the exceedances within the simulation envelope (see Section 3.2.2.2.3 for details), 
which  is defined by the 5th and 95th percentile of the simulated Ripley K function at each 
distance interval (r), fails to support a conclusion that the exceedance events are clustered.   
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attempts at fitting a Poisson model using individual floor levels were unsuccessful due to the 

rity

(

more

 

12. 

 

roups to determine which exceedance rates were significantly different, if any.  The difference 

etween the lower floor group and the middle floor group was found to be significant by Fisher’s 

xact test (p=0.04, 2-sided); differences between the middle and upper, and lower and upper floor 

roups were not statistically significant by Fisher’s exact test (p=0.17 and p=0.43, respectively; 

-sided).  The Poisson model for the test only data was not significant. 

isher’s exact test for the clean and test data indicates the difference in exceedance rates between 

oors is statistically significant (p=0.02, 2-sided).  The exceedance rate was highest for the lower 

oor group (0.66%), lower for the middle floor group (0.44%), and the lowest for the upper floor 

roup (0.32%).  Additional tests were performed between the floor groups to determine which 

xceedance rates were significantly different.  The difference between the lower and upper floor 

roups was found to be statistically significant by Fisher’s exact test (p=0.01; 2-sided).  The 

ifferences between the lower and middle floor group, and the middle and upper floor group were 

und to be not significant by Fisher’s exact test (p=0.12, p=0.20, respectively; 2-sided).  The 

dds ratios for the Poisson model indicate lower floors are twice as likely to have exceedances as 

e upper floo

ra  of exceedances.  To address this problem, floors were grouped into three categories: lower 

floors (floors 3 and lower), middle floors (floors between 4 and 9, inclusive), and upper floors 

(floors 10 and higher).  The analysis was performed in two ways.  The first approach was 

performed at the sample level (sample-basis); each sample result was used in the analyses (i.e., 

the exceedance events were not aggregated at the building level).  In the second approach 

residence-basis), the data were aggregated at the residence level; any residence that had one or 

 exceedance was treated as an exceedance. 

Sample-Basis Analysis 

Contingency tables for the test only and clean and test data are provided as Tables B-11 and B-

All of the exceedance rates are less than 1%.  Fisher’s exact test for the test only data indicates the 

difference in exceedance rates between floors is marginally significant (p=0.08, 2-sided).  A 

higher exceedance rate was observed for the middle floor group (0.73%) then either the lower 

(0.11%) and upper (0.37%) floor groups.  Additional tests were performed between the floor 
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th rs (95% CI 1.2, 3.4) (p-value for chi-square test for parameter = 0.01).   

 



 

Table B-11.  Contingency table for test only PCMe exceedances, on a sample-basis. 
 

The exceedance rate in the middle floor group is higher than the exceedance rates 
observed in the lower and upper floor groups.  The p-value for Fisher’s exact test is 0.08, 
indicating the differences between the floor groups is marginally statistically significant.    

Floor Group Not PCMe 
exceedances PCMe exceedances Totals 

lower 873a 

99.89b 
1c 

0.11d 874 

middle 1768 
99.27 

13 
0.73 1781 

upper 1617 
99.63 

6 
0.37 1623 

Totals 4258 
99.53 

20 
0.47e 4278e 

 

aNumber of samples that did not exceed health-based benchmark for asbestos 
b Percent of samples that did not exceed health-based benchmark for asbestos 
cNumber of samples that exceeded the health-based benchmark for asbestos 
b Percent of samples that exceeded the health-based benchmark for asbestos 
e The table does not include samples where the floor was not provided in the database, therefore sample sizes 
and percent of exceedances will differ from those provided elsewhere in the report. 
e The table does not include samples where the floor was not provided in the database, therefore sample sizes 
and percent of exceedances will differ from those provided elsewhere in the report. 
 



 

 

Table B-12.  Contingency table for clean and test PCMe exceedances, on a sample-
basis. 

 

 

The observed exceedance rate increases with floor level.  The p-value for Fisher’s exact 
t test is 0.02, indicating the differences between the floor groups is statistically significan

at the 0.05 level.    

Floor Group exceedances 
Not PCMe PCMe exceedances Totals 

lower 4233a 

99.34b 
28c 

0.66d 4261 

middle 40 9011 8971 
99.56 0.44 

upper 10488 
99.68 

34 
0.32 10522 

Totals 23692 102 
e 23794e 

99.57 0.43
 

aNumber of samples that did not exceed health-based benchmark for asbestos 
b

cNumber of samples that exceeded the health-based benchmark for asbestos 
b

e The table does not include samples where the floor was not provided in the database, therefore sample sizes 
and percent of exceedances will differ from those provided elsewhere in the report. 
 

 Percent of samples that did not exceed health-based benchmark for asbestos 

 Percent of samples that exceeded the health-based benchmark for asbestos 



 
Residence-Basis Analysis 

Contingency tables for the test only and clean and test data are provided as Tables B-13 and B-

14. 
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T . able B-13.  Contingency table for test only PCMe exceedances, on a residence-basis
 
e

exact test is 0.74, indicating the differences between the floor groups is not statistically 
significant.    

Floor Group Not PCMe 
e PCMe exceedances Totals xceedances 

147a 

100b 
0c 

0d 

303 
99.02 

3 

292 
99.32 

2 

742 
99.33 

5 
0.67e 

aNum
b Percent of samples that did not exceed health-based benchmark for asbestos 
cNumber of samples that exceeded the health-based benchmark for asbestos 
b Percent of samples that exceeded the health-based benchmark for asbestos 
e The table does not include samples where the floor was not provided in the 
and percent of exceedances will differ from those provided elsewhere in the report. 
 

lower 147 

middle 0.98 306 

upper 0.68 294 

Totals 747e 

 

ber of samples that did not exceed health-based benchmark for asbestos 

database, therefore sample sizes 

The exceedances are extremely rare across th  floor groups.  The p-value for Fisher’s 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table B-14.  Contingency table for clean and test PCMe exceedances, on a residence-
basis. 

 

 

Very little difference in the exceedance rate is observed between floor groups.  The p-
value for Fisher’s exact test is 0.84, indicating the differences between the floor groups is 
statistically significant. 

Floor Group Not PCMe 
exceedances PCMe exceedances Totals 

lower 534a 

99.07b 
5c 

0.93d 539 

middle 1306 
99.24 

10 
0.76 1316 

upper 1497 
99.27 

11 
0.73 1508 

Totals 3337 
99.23 

26 
0.77e 3363e 

 

aNumber of samples that did not exceed health-based benchmark for asbestos 
b Percent of samples that did not exceed health-based benchmark for asbestos 
cNumber of samples that exceeded the health-based benchmark for asbestos 
b Percent of samples that exceeded the health-based benchmark for asbestos 
e The table does not include samples where the floor was not provided in the database, or common areas, 
therefore sample sizes and percent of exceedances will differ from those provided elsewhere in the report. 
 



 
 

 

 


